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Abstract— In previous work, we developed the system level
approach to controller synthesis, and showed that under
suitable assumptions, this framework allowed for the syn-
thesis of localized controllers. We further showed that such
localized controllers enjoy O(1) synthesis and implementation
complexity relative to the dimension of the global system,
making them particularly well suited for the control of large-
scale cyber-physical systems. However, the assumptions under
which a system is localizable are stringent: roughly, a system
is localizable if the controller has the necessary actuation,
sensing and communication resources to “get out ahead” of the
propagation of a disturbance and neutralize it, thus containing
its effect to a localized spatiotemporal region. In this paper,
we relax the assumption of exact localizability, and develop a
controller synthesis methodology that is applicable to arbitrary
systems that are in an appropriate sense “easy to control.”
We focus on the state-feedback setting and develop a simple
necessary and sufficient condition for robust stability using the
system level approach. We then leverage this condition, along
with the introduction of virtual actuation, communication and
system responses into the synthesis process, to design stabilizing
controllers that have (i) O(1) synthesis and implementation
complexity and (ii) guaranteed performance bounds. We end
with a power-inspired example demonstrating the usefulness
of these techniques, wherein we synthesize a near globally
optimal controller for a system that is neither localizable nor
quadratically invariant.

PRELIMINARIES & NOTATION

We use lower and upper case Latin letters such as x
and A to denote vectors and matrices, respectively, and
lower and upper case boldface Latin letters such as x and
G to denote signals and transfer matrices, respectively.
Calligraphic letters such as S denote sets. We work with
discrete time, linear time invariant systems. We use standard
definitions of the Hardy spaces H2 and H∞, and denote
their restriction to the set of real-rational proper transfer
matrices by RH2 and RH∞. We use G[i] to denote the ith
spectral component of a transfer function G, i.e., G(z) =∑∞
i=0

1
ziG[i] for |z| > 1. Finally, FT denotes the space of

finite impulse response (FIR) transfer matrices with horizon
T , i.e., FT := {G ∈ RH∞ |G =

∑T
i=0

1
ziG[i]}. Let Z+ be

the set of all positive integers. We use calligraphic lower case
letters such as r and c to denote subsets of Z+. Consider a
transfer matrix Φ with nr rows and nc columns. Let r be a
subset of {1, . . . , nr} and c a subset of {1, . . . , nc}. We use
Φ(r , c) to denote the submatrix of Φ by selecting the rows
according to the set r and columns according to the set c.
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Finally, the symbol : is used to denote the set of all rows or
all columns, i.e., we have Φ = Φ(:, :). Let {c1, . . . cp} be a
partition of the set {1, . . . , nc}. Then {Φ(:, c1), . . . ,Φ(:, cp)}
is a column-wise partition of the transfer matrix Φ.

I. INTRODUCTION

Modern cyber-physical systems (CPS) are large-scale,
physically distributed and interconnected – these systems are
composed of a multitude of sub-controllers, each equipped
with their own sensors and actuators. These sub-controllers
then exchange their local information with each other via
a communication network, subject to the delay, bandwidth
and reliability properties of this network. The resulting in-
formation asymmetry among the sub-controllers is the funda-
mental challenge that must be overcome when synthesizing
distributed optimal controllers. [1]–[6].

In recent work, we introduced the System Level Approach
(SLA) to controller synthesis [7], [8], and showed that it
characterized the broadest known class of structured (e.g.,
distributed) optimal control problems that admit a convex
characterization, generalizing quadratic invariance (QI) [3].
A driving motivation behind this body of work was to address
the issue of scalable distributed controller synthesis and
implementation – in particular, the SLA allows for the design
of localized controllers [9], [10] using convex programming
that enjoy O(1) synthesis and implementation complexity
relative to the size of the full system.

Roughly speaking, a system is localizable if the effect of
each disturbance can be isolated to a localized region of the
global system and eliminated in finite time – it can thus
be thought of as a generalization of deadbeat control to the
spatiotemporal domain. For the effect of a disturbance to be
localized, there must be sufficient communication, sensing
and actuation resources so that the controller can detect and
“get out ahead” of a disturbance as its effects propagate
through the physical system. In practice this condition can
be quite restrictive, expensive to achieve, and is in general
stricter than the conditions imposed by QI1 as it requires
communication between sub-controllers to be faster than the
propagation of disturbances through the physical system.

In this paper we address this issue by extending our
previous results to systems that are in an appropriate sense
“nearly localizable.” We focus on the state-feedback setting,
and begin by developing necessary and sufficient conditions
under which a controller synthesized using the SLA robustly
stabilizes a family of physical plants. We then introduce

1Under mild assumptions, a system is QI if sub-controllers can commu-
nicate with each other faster than their control actions can be felt by other
sub-controllers. [11].



virtual actuation, communication and system responses into
the synthesis procedure to ensure that the augmented system
is indeed localizable, allowing us to design a controller that
enjoys the computational benefits of locality, i.e., that has
O(1) synthesis and implementation complexity. By viewing
these virtual components as perturbations to a nominal
system, we then appeal to our robustness result to guaran-
tee that the resulting controller is globally stabilizing, and
further provide sub-optimality bounds with respect to the
performance achievable by a centralized optimal controller.

Related work: There exists a rich body of work ad-
dressing the identification of tractable information exchange
constraints that lead to convex distributed optimal control
problems, cf. [1]–[7]. These results, and in particular QI,
were then used as a starting point to pose and solve dis-
tributed optimal controller synthesis problems under sparsity
and delay constraints for H2 (e.g., [12]–[17]) and H∞ (e.g.,
[18]–[20]) performance metrics. However, as all of these
results required QI (or QI-like) properties to hold, their
complexity did not scale well with the size of the global
system. This lack of scalability did not go unnoticed by
the community, and techniques based on regularization [21],
convex approximation [22], [23], and spatial truncation [24]
were used in hopes of finding a near optimal distributed static
feedback controller that are scalable to implement. These
methods were successful in extending the size of systems
for which a distributed controller could be computed, but
they are still limited in their scalability as they rely on an
underlying centralized synthesis procedure.

Paper organization: We begin by reviewing the relevant
SLA results from [7] for state-feedback synthesis in Section
II. In Section III we develop necessary and sufficient con-
ditions under which a controller synthesized using the SLA
robustly stabilizes a family of physical systems. In Section
IV, we show how the introduction of virtual actuation and
communication can be combined with the robustness result
developed in the previous section, as well as the notion of
column-wise separable System Level Synthesis (SLS) prob-
lems [8] to parameterize a family of stabilizing controllers
that can be synthesized and implemented in a localized
manner. This parameterization is then used to pose a cor-
responding optimal control problem in Section V, and show
that it can further be used to bound the sub-optimality of the
computed controller relative to the performance achievable
by a centralized optimal controller. We then demonstrate the
usefulness of these ideas on numerical examples in Section
VI, and end with conclusions and directions for future work
in Section VII.

II. THE SYSTEM LEVEL APPROACH

We consider linear time invariant (LTI) systems in discrete
time of the form

x[t+ 1] = Ax[t] +B1w[t] +B2u[t] (1a)
z̄[t] = C1x[t] +D12u[t] (1b)

where x, u, w, and z̄ are the state vector, control action,
external disturbance, and regulated output, respectively. In

this paper, we focus on the state-feedback setting wherein
u = Kx for a possibly dynamic feedback gain K.

In recent work [7], [8], [25], we defined and analyzed the
System Level Approach (SLA) to controller synthesis, which
provides a novel parameterization of structured stabilizing
controllers. We recall the relevant state-feedback results that
we build upon here.

The z-transform of the state dynamics (1a) is given by

(zI −A)x = B2u + δx, (2)

where δx := B1w denotes the disturbance affecting the state.
We then define R to be the system response mapping

the disturbance δx to the state x, and M to be the system
response mapping the disturbance δx to the control action
u. By substituting a dynamic state feedback control rule
u = Kx into (2), the system response {R,M} as a function
of the controller K as can be written as

R = (zI −A−B2K)−1

M = K(zI −A−B2K)−1. (3)

The following key theorem from [7] provides an algebraic
characterization of the set {R,M} of state-feedback system
responses that are achievable by an internally stabilizing
controller K.

Theorem 1: For the dynamics (1) with state-feedback con-
trol rule u = Kx, the following are true:

(a) The affine subspace defined by

[
zI −A −B2

] [R
M

]
= I (4a)

R,M ∈ 1

z
RH∞ (4b)

parameterizes all system responses from δx to (x,u),
as defined in (3), achievable by an internally stabilizing
state feedback controller K.

(b) For any transfer matrices {R,M} satisfying (4), the
controller K = MR−1 is internally stabilizing and
achieves the desired system response (3).

We further showed that the controller K = MR−1 can
be implemented as,

δ̂x = x− x̂

u = zMδ̂x
x̂ = (zR− I)δ̂x.

(5)

as illustrated in Figure 1. An important feature of this
controller parameterization and implementation is that if the
system responses {R,M} are structured, then so is the
controller implementation defined in terms of the transfer
matrices R̃ and M̃ (see Figure 1 caption for definitions).

Theorem 1 and the corresponding controller implementa-
tion shown Figure 1 allow us to pose the controller synthesis
task as finding the solution to the following convex System
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Fig. 1: The proposed state feedback controller structure, with R̃ = I−zR
and M̃ = zM.

Level Synthesis (SLS) problem:

minimize
{R,M}

g(R,M)

subject to (4a)− (4b)[
R
M

]
∈ S. (6)

where g is a suitably chosen convex cost functional, and S
is a convex set encoding System Level Constraints (SLCs)
that can be used to enforce various properties on the system
response {R,M} and the corresponding controller imple-
mentation (cf., §IV [7] for a catalog of useful SLCs).

A. Locality SLCs and scalable synthesis

Of particular interest are SLCs that impose subspace con-
straints that define transfer matrices of sparse spatiotemporal
support, i.e., SLCs of the form S = L ∩ FT , where L
enforces sparse spatial support, and FT enforces sparse
temporal support (FIR of horizon T ). We say that a system
is localizable if there exist system responses {R,M} that
simultaneously satisfy constraints (4a)-(4b) and a SLC S that
enforces sparse spatiotemporal support.

An immediate benefit of enforcing such sparsity con-
straints on the system responses {R,M} is that implement-
ing the resulting controller (5) can be done in a localized
way using FIR filter banks, i.e., each controller state x̂i, (δ̂x)i
and control action ui can be computed using a local subset
(as defined by the support of the system response and the
FIR horizon T ) of the global controller disturbance estimate
history δ̂x. For this reason, we refer to such constraints as
a localized SLC when it defines a subspace with sparse
support. As we discuss in detail in [8] and briefly recall
in §IV-A, when such localized constraints are combined
with objective functions that satisfy certain separability prop-
erties, this also allows for the resulting system response
and controller to be synthesized in a localized way, i.e.,
the global computation decomposes naturally into decoupled
subproblems that depend only on local decision variables and
local sub-matrices of the state-space representation (1).

As we argued in [7], the feasibility of such locality
constraints can be viewed as a generalization of control-
lability to localized spatiotemporal regions of the system.

This condition can place rather stringent demands on the
controller architecture: in particular this implies that for each
disturbance perturbing the system, there must be sufficient
locally available communication and actuation such that the
effect of a disturbance on the system can be contained to
a localized spatial region, and can further be completely
eliminated with T time-steps within this region – this clearly
is not be possible for sparsely actuated systems or for
controllers with communication speed that is no faster than
that of the speed of disturbance propagation through the
physical plant.

This paper addresses the problem of synthesizing localized
controllers, i.e., controllers that have O(1) synthesis and
implementation complexity relative to the size of the full
system, for systems that are not exactly localizable. What we
show is that if the system is appropriately easy to control (to
be formalized in §IV), then the benefits of locality can still be
exploited, allowing for the scalable synthesis of stabilizing
controllers with performance guarantees.

III. A ROBUSTNESS RESULT

We begin with a robustness result that provides necessary
and sufficient conditions under which a controller (5), im-
plemented using transfer matrices that only approximately
satisfy the achievability constraint (4), is still stabilizing. In
§IV, we leverage this result and the use of virtual actuation
and communication resources at design time to define a
localized controller synthesis algorithm for systems that are
not localizable.

Theorem 2: Let (Rc,Mc,∆) be a solution to[
zI −A −B2

] [Rc

Mc

]
= I + ∆ (7)

Then, the controller implementation

δ̂x = x− x̂ (8a)

u = zMcδ̂x (8b)

x̂ = (zRc − I)δ̂x. (8c)

internally stabilizes the system (A,B2) if and only if (I +
∆)−1 is stable.

Proof: For a state-feedback system (1) with controller
implementation (5) using transfer matrices {Rc,Mc}, the
following holds

(zI −A)x = B2u + δx (9a)

u = zMcδ̂x + δu (9b)

x = zRcδ̂x − δy., (9c)

where δy and δu are respectively perturbations on the
measurement and control action (as illustrated in Figure 1)
introduced to verify the internal stability of the resulting
closed loop system.

Substituting (9b) and (9c) into (9a), we have

z(zI −A)Rcδ̂x − (zI −A)δy = zB2Mcŵ +B2δu + δx.



Moving ŵ to the left-hand-side and using the relation (7)
from the assumption, we obtain

z(I + ∆)δ̂x = (zI −A)δy +B2δu + δx.

Denote I∆ = (I + ∆)−1. The closed loop transfer matrices
from (δx, δy, δu) to δ̂x are now given by

δ̂x =
1

z
I∆δx + I∆(I − 1

z
A)δy +

1

z
I∆B2δu. (10)

Substituting (10) into (9b) and (9c), we have the closed
loop transfer matrices from (δx, δy, δu) to (x, u, δ̂x)
summarized in Table I. Clearly, if I∆ is stable, then all the
transfer matrices in Table I are stable. If I∆ is unstable, then
the closed loop maps from δx to δ̂x will be unstable, and the
controller does not internally stabilize the system. Therefore,
the stability of I∆ = (I + ∆)−1 is necessary and sufficient
condition for the controller implementation (8) to internally
stabilize the system (A,B2).

TABLE I: Closed Loop Maps With Non-localizability

δx δy δu

x RcI∆ RcI∆(zI −A)− I RcI∆B2

u McI∆ McI∆(zI −A) I +McI∆B2

δ̂x
1
z
I∆ I∆(I − 1

z
A) 1

z
I∆B2

Theorem 2 can now be combined with small gain theorems
to provide simple sufficient conditions for robust stability.

Corollary 1 (H∞ robustness): Under the conditions of
Theorem 2, the closed loop system is stable if ‖∆‖H∞ < 1.

Proof: Classical, see [26] for example.

Corollary 2 (L1 robustness): Under the conditions of
Theorem 2, the closed loop system is stable if ‖∆‖L1

< 1.
Proof: Classical, see [27] for example.

Corollary 3 (E1 robustness): Under the conditions of
Theorem 2, the closed loop system is stable if ‖∆‖E1 :=
‖∆>‖L1

< 1.
Proof: The transfer matrix (I + ∆)−1 is stable if and

only if (I + ∆)−> = (I + ∆>)−1 is stable. The result then
follows from Corollary 2.

Remark 1: Note that ‖∆‖L1
and ‖∆‖E1 are the worst

case `∞ → `∞ and `1 → `1 gains of ∆, respectively.
It therefore follows that if a set of transfer matrices

{Rc,Mc,∆} satisfy the following constraints:[
zI −A −B2

] [Rc

Mc

]
= I + ∆[

Rc

Mc

]
∈ L ∩ FT ∩ X , ‖∆‖• < 1,

(11)

for • ∈ {H∞,L1, E1}, then a controller (5) implemented
using the transfer matrices {Rc,Mc} is globally stabilizing
for the system dynamics (1).

IV. VIRTUALLY LOCALIZABLE SYSTEMS

In this section, we leverage the previously developed ro-
bustness results to formulate a localized synthesis procedure
that generates stabilizing controllers for systems that are
not localizable. We begin with a brief review of relevant
results from [8] on column-wise separable constraints and
objective functions that allow the global synthesis task to
be decomposed into local subproblems that can be solved in
parallel.

A. Column-wise separable SLS problems

We recall here the notion of a SLS problem (6) being
column-wise separable, as defined in [8]. For compactness
of notation, we use

Φ =

[
R
M

]
to represent the system response we want to optimize for,
and we denote by ZAB the transfer matrix

[
zI −A −B2

]
.

Definition 1: The functional objective g(Φ) in (6) is
column-wise separable with respect to the column-wise
partition {c1, . . . , cp} if

g(Φ) =

p∑
j=1

gj(Φ(:, cj)) (12)

for some functionals gj(·) for j = 1, . . . , p.
Definition 2: The set constraint S in (6) is column-

wise separable with respect to the column-wise partition
{c1, . . . , cp} if the following condition is satisfied:

Φ ∈ S if and only if Φ(:, cj) ∈ Sj for j = 1, . . . , p
(13)

for some sets Sj for j = 1, . . . , p.
In [8] we show that locality, FIR SLCs, as well as the

achievability constraint (4) are all column-wise separable
with respect to arbitrary column-wise partitions. In particular,
if g(·) and X are respectively a column-wise separable
objective function and SLC with respect to a column-wise
partition, then the resulting SLS problem is also column-wise
separable with respect to that same partition.

We can then specialize the state feedback SLS problem
(6) to a localized one that can be written as

minimize
Φ

g(Φ) (14a)

subject to ZABΦ = I (14b)
Φ ∈ L ∩ FT ∩ X . (14c)

Recall that the subspace L enforces spatial sparsity, the
FIR constraint FT enforces that the system responses be
FIR transfer matrices of horizon T , and that the additional
SLC X can be used to encode other constraints such as
information exchange delays between sub-controllers. Note
that the affine subspace constraint (14b), the locality SLC L
and the FIR SLC FT are column-wise separable with respect
to any column-wise partition, and thus the overall problem
is column-wise separable with respect to a given column-
wise partition if the objective function g and SLC X are
also column-wise separable with respect to that partition.



Assume that the the objective function g and SLC X
are both column-wise separable with respect to a column-
wise partition {c1, . . . , cp}. In this case, we have that the
state feedback localized SLS problem (14) is a column-wise
separable SLS problem. Specifically, (14) can be partitioned
into p parallel subproblems as

minimize
Φ(:,cj)

gj(Φ(:, cj)) (15a)

subject to ZABΦ(:, cj) = I(:, cj) (15b)
Φ(:, cj) ∈ L(:, cj) ∩ FT ∩ Xj (15c)

for j = 1, . . . , p.
In this case, not only can each subproblem be solved

independently and in parallel, but as we show in [8], the
locality SLC L allows us to reduce the size of each subprob-
lem’s optimization variable and the corresponding system
model from global to local scale, as defined by the support
of the corresponding column-wise constraint L(:, cj). It is
this decomposition and complexity reduction that we seek
to preserve in the following when locality constraints are
not exactly feasible.

Remark 2: In [8] we introduce the notion of partially
separable SLS problems, which are a substantial general-
ization of column-wise separable problems. Such problems
also enjoy favorable computational properties, in that they
can be solved using distributed optimization methods such
the alternating direction method of multipliers (ADMM)
wherein each iterate update subproblem can be decomposed
column(row)-wise and solved with O(1) computational com-
plexity. Although we focus on column-wise separable prob-
lems in what follows, the results generalize to partially
separable SLS problems in a natural way.

B. Virtually localizable systems
In particular, we seek a computational method with O(1)

complexity relative to the size of the global system for
finding transfer matrices Rc,Mc,∆ that satisfy[

zI −A −B2

] [Rc

Mc

]
= I + ∆[

Rc

Mc

]
∈ L ∩ FT ∩ X , ‖∆‖E1 < 1,

(16)

where the SLCs L, FT and X are as described above.
For convenience, we assume that the additional SLC X is
column-wise separable with respect to an arbitrary column-
wise partition – the discussion extends to general column-
wise partitions at the expense of more cumbersome notation.

It therefore follows that the convex set defined by the
constraints (16) is itself column-wise decomposable with
respect to an arbitrary column-wise partition – this is because
of our choice of the use of the ‖ · ‖E1 norm to enforce the
robust stability condition defined in Theorem 2. What is not
apparent yet is if the resulting subproblems enjoy the same
dimensionality reduction properties of localized problems,
as in general, the error term ∆ is a dense transfer matrix
that captures the non-localizable terms of the closed loop
dynamics. In what follows, we suggest two complementary
approaches to circumventing this issue.

1) Virtual actuation: We first propose introducing a vir-
tual centralized full-actuation controller during the synthesis
procedure. Such a virtual controller ensures that any spa-
tiotemporal constraint of the form L ∩ FT that is feasible
under centralized full-actuation control is feasible in our
framework as well, thus allowing for a localized synthesis
procedure and controller implementation – further, if the
effects of this virtual controller on the closed loop are
suitably bounded, we may then appeal to Theorem 2 to
guarantee the closed loop stability of the system.

Specifically, we synthesize a localized controller for a
system described by the following augmented dynamics:

x[t+ 1] = Ax[t] +B1w[t] +B2u[t] + v[t] (17a)
z̄[t] = C1x[t] +D12u[t], (17b)

where all variables and matrices are as in equation (1), and
v is the previously described set of virtual actuators. The
corresponding SLP of achievable closed loop responses is
then given by

[
zI −A −B2

] [R
M

]
= I + V, (18)

where now V is the closed loop map from the process noise
δx to the virtual control action v. If we further impose that
V be localized and FIR, then we can combine the SLP
of the augmented system (18), with the parameterization
of robustly stabilizing approximate system responses (16)
to obtain the following description of a set of robustly
stabilizing controllers for a given system (1):

[
zI −A −B2

] [Rc

Mc

]
= I + V[

Rc

Mc

]
∈ L ∩ FT ∩ X ,

V ∈ L′ ∩ FT ′ , ‖V ‖E1 < 1.

(19)

If the norm bound on the virtual system response V is
removed, then the set described by the constraints (19) can
always be made to be non-empty by selecting the virtual
spatiotemporal SLC L′ ∩ FT ′ to be appropriately large.
It therefore follows that if the corresponding augmented
dynamics are suitably “easy to control,” i.e., can be localized
using only a small amount of virtual control authority, then
the set of stabilizing localized controllers described by (19)
is non-empty as well.

2) Leaky boundaries: We start with the SLP (18), and
further decompose the state system response R as the sum of
two components: a localized response Rc and a “leak” term
Rl that can be used to capture the non-localizable component
of the state-response R. We can then appropriately modify
the parameterization (19) to account for the contribution of
this leak term, and write



[
zI −A −B2

] [Rc

Mc

]
= I + V − (zI −A)Rl[

Rc

Mc

]
∈ L ∩ FT ∩ X ,[

Rl

V

]
∈ L′ ∩ FT ′ , ‖V − (zI −A)Rl‖E1 < 1.

(20)

The advantage of introducing this extra element to the
synthesis task is that it allows more freedom in selecting
the spatiotemporal constraint L′ ∩ FT ′ in which the virtual
system responses {Rl,V} are constrained to lie.

Remark 3: Similarly to the leaky boundaries setting
above, if the state matrices (A,B2) naturally decompose
into localizable and non-localizable components (e.g., A =
Aloc +Aleak, B2 = Bloc +Bleak), then a similar modification
can be made to the parameterization (19).

We use these stabilizing controller parameterizations in the
next section to formulate an optimal control problem that
produces controllers with provable sub-optimality bounds
relative to the centralized optimal controller.

V. PERFORMANCE BOUNDS

From Table I we see that the actual closed loop map from
the disturbance δx to state x and control action u achieved
by a controller implemented using the approximate system
responses {Rc,Mc} is given by[

x
u

]
=

[
Rc

Mc

]
(I + ∆)−1δx. (21)

Combining the regulated output description (1b), the actual
closed loop maps (21) and either of the augmented SLPs
(19) or (20), we can pose the following virtually localizable
optimal control problem

minimize
Rc,Mc,∆

∥∥∥∥[C1 D12

] [Rc

Mc

]
(I + ∆)−1B1

∥∥∥∥
s.t. constraint (19) or (20),

(22)

where we use ∆ to denote V if we are using the augmented
SLP (19), and ∆ to denote V− (zI−A)Rl if we are using
the augmented SLP (20).

Optimization problem (22) is non-convex: however, if the
norm chosen in the objective function is sub-multiplicative,
we can upper bound the objective function by

‖B1‖
1− ‖∆‖

∥∥∥∥[C1 D12

] [Rc

Mc

]∥∥∥∥ , (23)

where we have used the sub-multiplicative property, that
‖∆‖ < 1 and the power-series expansion of the the inverse
(I + ∆)−1 =

∑∞
k=0 ∆k. As the next lemma shows, this

bound is indeed quasi-convex and hence can be effectively
optimized.

Lemma 1: For a convex function f : D → R, a non-
negative convex function g : D → R+, both defined on
some domain D, and a convex set C ⊆ D, it holds that

min
x∈C

f(x)

1− g(x)
= min
γ∈[0,1)

1
1−γ min

x∈C
{f(x) | g(x) ≤ γ} (24)

Proof: (Sketch) As g(x) is non-negative, we can write

min
x∈C

f(x)

1− g(x)
= min
γ,x∈C

f(x)

1− γ s.t. g(x) ≤ γ

= min
γ

1
1−γ min

x∈C
{f(x) | g(x) ≤ γ},

which proves the result.

Thus applying the bound (23) and Lemma 1, we can
compute an upper bound to optimization problem (22) by
solving the following quasi-convex problem:

minγ∈[0,1)
1

1−γminimize
Rc,Mc,∆

∥∥∥∥[C1 D12

] [Rc

Mc

]∥∥∥∥
s.t. ‖∆‖ ≤ γ

constraint (19) or (20).

(25)

Corresponding lower bounds on the cost achievable by a
centralized optimal controller can be further computed using
the methods described in [28], allowing us to bound the
sub-optimality gap of the resulting stabilizing controller. We
illustrate these ideas in the next section, and explore different
trade-offs that may arise in the design of a large-scale cyber-
physical system.

VI. CASE STUDIES

We now apply the methods developed to a simple bidi-
rectional chain system and a power-inspired system exam-
ple; in both cases, we compute control policies subject to
communication delays between sub-controllers such that the
resulting problem is neither localizable nor quadratically
invariant. We note that under our setup, a communication
speed of zero leads to a completely decentralized controller
implementation, whereas when communication speed tends
to ∞ one obtains a fully centralized controller.

We solve the virtual localized optimal control problem
(25) using the augmented SLP (19), and use the ‖ · ‖E1
norm for the objective function. We use this norm for
computational convenience, as it leads to a column-wise
separable problem, although recent and classical work do
support the use of this metric in certain cases [29]–[31] –
if a different induced norm, such as the L1 norm, is chosen
then the methods for partially separable problems described
[8] can be used to solve the corresponding SLS problem.

A. Chain System

The first example considered is a marginally stable bi-
directional chain with n = 51 nodes, where each node
corresponds to a scalar state. For a coupling value of α ∈
[0, .5) node dynamics are given by

xi[t+1] = (1−2α)xi[t]+αxi−1[t]+αxi+1[t]+biui[t]+wi[t],

where bi = 0 if i is odd, else i = 1. For the interior nodes
1 < i < 51, and

x1[t+ 1] = (1− α)x1[t] + αx2[t] + u1[t] + w1[t],
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Fig. 3: Sub-optimality of the (approximately) localized controller as a
function of communication speed. Note that for a communication speed
of 1x (the minimum required for QI), we achieve (approximately) globally
optimal behavior via an approximately localized-controller that enjoys O(1)
synthesis and implementation complexity.

x51[t+ 1] = (1− α)x51[t] + αx50[t] + u51[t] + w51[t]

for the end nodes i = 1, 51. The regulated output of the
system is given by z̄T [t] = [xT [t], uT [t]]T . For this case
study we pick α = .3, set d = 4 and T = 15, and
vary communication speed from 2x to 0x that of dynamics
propagation – we further impose a sensing/actuation delay of
1. Figure 2 illustrates the effect of an impulse striking node
25 on the right-half (i.e., from node 25 on) of the chain for
varying communication speeds – in particular for each node
we plot ‖xi‖`1 =

∑∞
t=0 |xi(t)|. We see that as communi-

cation speed decreases, so does the degree of localization
of the disturbance and the closed loop performance of the
system – note that we are able to compute a completely
decentralized controller with communication speed of 0x.
Figure 3 plots the ratio of our computed upper-bound to
the lower-bound computed using the methods in [28]. We
see in particular that for a communication speed of 1x (the
minimum needed to satisfy QI), we achieve (approximately)
globally optimal behavior via an approximately localized-
controller that enjoys O(1) synthesis and implementation
complexity. We further note the conservativeness of our
sufficient condition, in that we are not able to guarantee (a
priori) the stability of the completely decentralized controller.

In the proceeding case study we consider nodes with more
complex (non-scalar) dynamics and show illustrate that the
sub-optimality gap can be made small even when the open-
loop is unstable.
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Fig. 4: Upper and lower bounds for the closed loop performance of
the power system with 36 busses. With a communication speed of 0.5x
the system in not localizable nor QI, but achieves near globally optimal
performance.

B. Power System Example

Consider the swing equations for a n-bus power network
which evolves according to

miθ̈i = −diθ̇i−
∑
j∈Ni

kij(θi− θj) +wi +ui, i = 1, . . . , n,

(26)
where θi, di,mi, wi, ui denote model the phase angle devi-
ation, damping, inertia, disturbance, and control action of
controllable load at bus i, finally j ∈ Nk implies busses i
and j are connected. This can be re-written as a discrete time
state-space system with state vector xi = [θi, θ̇i]

T and

Aii =

[
1 dt

ki
mi
dt 1− di

mi
dt

]
, Aij =

[
0 0

kij
mi
dt 0

]
,

Bii =
[

0 1
]T
,

where ki =
∑
j∈Ni

kij and dt is the discretization time step.
An equal penalty on state deviation and control action is
chosen, i.e.

[
C1 D12

]
= I. Further modelling details can

be found in [8, §V]. The parameters m−1i , di, kij are sam-
pled from a uniform distribution over [0, 2], [1, 1.5], [0.5, 1]
respectively. The full matrix A is then scaled to make it
marginally stable. In this example we consider an n = 36
bus model which gives A ∈ R72×72 and use a discretization
step of dt = 2. For the case study that follows we use a
horizon length of T = 15, a 1-hop locaizability region, and
communication speed of 0.5. This parameter setting renders
the system non-QI and not localizable.

We investigate performance bounds as a function of com-
munication speed, and as before compute a lower-bound
using the methods in [28]. Figure 4 shows that as com-
munication speed decreases the sub-optimality gap can rise
significantly, and in fact seems to exhibit a “phase transition.”
We believe that when communication speed decreases below
the “effective propagation rate” of disturbances, the closed
loop performance of the corresponding controller degrades
significantly – future work will look to formalize this idea.
As with the previous examples, because the communication
speed is slower than the propagation of dynamics in the plant,
we are working in the non-QI regime. The observed sharp
phase transition is not specific to this example, and has been
observed in other numerical experiments.

VII. CONCLUSIONS

In this paper we defined and analyzed the notion of
virtually localizable systems under state-feedback control.



In particular, we first developed a necessary and sufficient
condition for a controller synthesized using the SLA to
stabilize a family of physical plants. We then showed how
this robustness result could be combined with the idea of
virtual actuation and system responses, used solely at the
time of synthesis, to compute stabilizing localized controllers
that enjoy O(1) synthesis and implementation complexity
relative to the full size of the system. We then used these
ideas to pose a virtually localized optimal control prob-
lem, and showed how it could be used to provide sub-
optimality guarantees on the resulting stabilizing controllers.
We finished with some numerical examples exploring design
tradeoffs that arise in the context of the design of large-scale
non-localizable systems, and observed an interesting phase
transition phenomena as a function of communication speed.
Future work will look to extend these results to the output-
feedback setting, and to formally understand the empirically
observed phase transition.
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