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Abstract

When designing controllers for large-scale systems, the architectural aspects of the
controller such as the placement of actuators, sensors, and the communication links
between them can no longer be taken as given. The task of designing this architec-
ture is now as important as the design of the control laws themselves. By interpreting
controller synthesis (in a model matching setup) as the solution of a particular linear
inverse problem, we view the challenge of obtaining a controller with a desired archi-
tecture as one of finding a structured solution to an inverse problem. Building on this
conceptual connection, we formulate and analyze a framework called Regularization for
Design (RFD), in which we augment the variational formulations of controller synthesis
problems with convex penalty functions that induce a desired controller architecture.
The resulting regularized formulations are convex optimization problems that can be
solved efficiently; these convex programs provide a unified computationally tractable
approach for the simultaneous co-design of a structured optimal controller and the ac-
tuation, sensing and communication architecture required to implement it. Further,
these problems are natural control-theoretic analogs of prominent approaches such as
the Lasso, the Group Lasso, the Elastic Net, and others that are employed in statistical
modeling. In analogy to that literature, we show that our approach identifies optimally
structured controllers under a suitable condition on a “signal-to-noise” type ratio.

1 Introduction
As we move into the era of large-scale systems such as the smart-grid, software defined
networking and automated highways, the design of control systems is becoming increasingly
more challenging. Designing the controller architecture – placing sensors and actuators as
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well as the communication links between them – is now as important as the traditional design
of the control laws themselves.

A conceptually useful viewpoint in the design of controller architectures is to consider
complicated systems as being composed of multiple simpler atomic subsystems. For example,
if the task is to design the actuation architecture of a controller, a natural atomic element is a
controller with a single actuator – it is then clear that a general architecture can be built out
of such atoms. In general, controllers with a dense actuation, sensing and communication
architecture (i.e., systems that consist of many atomic subsystems) achieve better closed loop
performance in comparison with those with sparse architectures (i.e., systems composed of
a small number of atomic subsystems). However, as these architectural resources translate
into actual hardware requirements, it is desirable from both a maintenance and a cost per-
spective that we minimize the total number of atomic elements used. Hence, the problem
of controller architecture/control law co-design is one of jointly optimizing an appropriately
defined structural measure of the controller and its closed loop performance by trading off
between these two competing metrics in a principled manner. In other words, we seek an
approximation of a given optimal controller by one that utilizes fewer atomic elements with-
out a significant loss in performance. This goal has parallels with the approximation theory
literature in which one seeks approximations of complicated functions as combinations of
elements from a simpler class of functions such as the Fourier basis or a wavelet basis [2].

In an appropriate parameterization, pure controller synthesis methods in a model match-
ing framework can be interpreted as techniques for solving a particular linear inverse problem
in which one is given an open loop response of a system Y and a linear map L from the
controller to the closed loop response, and one seeks a controller U such that Y −L(U) ≈ 0
(as measured in a suitable performance metric). From this perspective, our objective in
joint controller architecture/control law co-design is to obtain structured solutions to the
linear inverse problem underlying controller synthesis. Such structured linear inverse prob-
lems (SLIP) are of interest in diverse applications across applied mathematics – for instance,
computing sparse solutions to linear inverse problems or computing low-rank solutions to
systems of linear matrix equations arise prominently in many contexts in signal processing
and in statistics [3–6].

In these problem domains, minimizing the `1 norm subject to constraints described by
the specified equations is useful for obtaining sparse solutions [3, 4], and similarly, nuclear
norm minimization is useful for obtaining low-rank solutions to linear matrix equations [5,6].
These ideas were extended in [7], where the authors describe a generic convex programming
approach – based on minimizing an appropriate atomic norm [2]– for inducing a desired type
of structure in solutions to linear inverse problems. Motivated by these developments, our
approach to the problem of joint architecture/control law co-design is to augment variational
formulations of controller synthesis methods with suitable convex regularization functions.
The role of these regularizers is to penalize controllers with more complex architectures in
favor of those with less complex ones, thus inducing controllers with a simpler architecture.
We call this framework Regularization for Design (RFD).

Related Work: Regularization techniques based on `1 norms and, more generally,
atomic norms have already been employed extensively in system identification, e.g., to iden-
tify systems of small Hankel order (cf. [8–10]), and in linear regression based methods [11].
Although the resulting solutions yield structured systems, they typically do not have a di-
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rect interpretation in terms of the architecture of a control system (i.e., actuators, sensors
and the communication links between them). The use of regularization explicitly for the
purpose of designing the architecture of a controller can also be found in the literature.
Examples include the use of `1 regularization to design sparse structures in H2 static state
feedback gains [12], treatment therapies [13], and synchronization topologies [14]; the use
of group norm penalties to design actuation/sensing schemes [1, 15]; and the use of a spe-
cialized atomic norm to design communication delay constraints that are well-suited to H2

distributed optimal control [16, 17]. Although these methods provide an algorithmic ap-
proach for designing controllers with a desired architecture in certain specialized settings,
they do not enjoy the same theoretical support that regularization techniques for structured
inverse problems enjoy in other settings [2–6]. Methods based on greedy algorithms have also
been developed to identify minimal architectures that guarantee the structural observability
and controllability of a system [18].

Our Contributions: This paper presents novel computational and theoretical contribu-
tions to the area of optimal controller architecture/control law co-design. From a computa-
tional perspective, we propose a general RFD framework that is applicable in a much broader
range of settings than the previous approaches mentioned above. We restrict ourselves to
problems for which the linear optimal structured controller is specified as the solution to a
convex optimization problem [19–21]. As a result, RFD optimization problems with convex
regularization functions for inducing a desired architecture are convex programs. Specifically,
(i) we provide a catalog of atomic norms useful for control architecture design. In particular,
in addition to known penalties for actuator, sensor and communication design, we provide
novel penalties for simultaneous actuator, sensor and/or communication design; (ii) we de-
scribe a unifying framework for RFD that encompasses state and output feedback problems
in centralized and distributed settings, and in which any subset of actuation, sensing, and/or
communication architectures are co-designed; and (iii) we present a two-step algorithm that
first identifies the controller architecture via a finite-dimensional convex RFD optimization
problem, and then solves for the potentially infinite dimensional linear optimal controller
restricted to the designed architecture using methods from classical and distributed optimal
control [22–28].

To provide theoretical support for our proposed computational framework, we make ex-
plicit links between RFD optimization problems and the use of convex optimization based
approaches for structured inference problems. We build on these links to analyze the prop-
erties of the structured controllers generated by RFD synthesis methods, which leads to con-
ditions under which RFD methods succeed in identifying optimally-structured controllers.
Our analysis and results are natural control-theoretic analogs of similar results in the sta-
tistical inference literature. Specifically, (i) we show that finite-horizon finite-order convex
approximations of an RFD optimization problem can recover the structure of an underlying
infinite dimensional optimal controller; (ii) we define control-theoretic analogs of identifiabil-
ity conditions and signal-to-noise ratios (SNRs), and we provide sufficient conditions based
on these for a controller architecture to be identified by RFD. In particular, we show that
controllers that maximize this SNR-like quantity are more easily recovered via RFD than
those that do not, and (iii) we provide a concrete example of a system satisfying the above
identifiability and SNR conditions. As far as we are aware, this is the first example in the
literature of a system for which it is shown that convex optimization provably recovers the
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actuation architecture of an underlying optimally structured controller.
Paper Organization: In §2, we define notation and discuss the relevant concepts from

operator theory. This paper is then organized in a modular fashion: §3-5 focus on the
computational aspects of controller architecture design, whereas §6 and §7 focus on conditions
for optimal architecture recovery. Specifically, in §3, we introduce the RFD framework as
a natural blend of controller synthesis methods and regularization techniques. In §4, we
focus on RFD problems with an H2 performance metric and an atomic norm penalty; we
present a catalog of atomic norms that are useful for controller architecture design, and
make connections to the structured inference literature. The computational component of
the paper concludes in §5, in which we formally describe the two-step RFD procedure,
and we apply the RFD framework to a simultaneous actuator, sensor and communication
design problem. In §6, we shift our focus to analyzing the theoretical properties of the
RFD procedure: we make connections between structured controller design and structured
inference problems by framing both tasks as finding structured solutions to linear inverse
problems, and we leverage these connections to describe interpretable sufficient conditions
for the success of a finite-dimensional RFD optimization problem. In §7, we provide a case
study to further illustrate the applicability of these results.

2 Preliminaries & Notation

We use standard definitions of the Hardy spaces H2 and H∞. As is standard, we denote
the restrictions of H2 and H∞ to the space of real proper transfer matrices Rp by RH2 and
RH∞. As we work in discrete time, the two spaces are equal, and as a matter of convention
we refer to this space as RH∞. We refer the reader to [22] for a review of this standard
material. Let RH≤t∞ denote the subspace of RH∞ composed of finite impulse response (FIR)
transfer matrices of length t, i.e., RH≤t∞ := {G ∈ RH∞ |G =

∑t
i=0

1
zi
G(i)}. We denote the

projection of an element G ∈ Rp onto the subspace RH≤t∞ by G≤t. Unless required for the
discussion, we do not explicitly denote dimensions and we assume that all vectors, operators
and spaces are of compatible dimension throughout.

We denote elements of Rp with upper case Latin letters, and temporal indices and hori-
zons by lower case Latin letters. Linear maps from Rp to Rp are denoted by upper case
Fraktur letters such as L. For such a linear map, we denote the ith impulse response ele-
ment of L by L(i). We further use L≤t to denote the restriction of the range of L to RH≤t∞ ,
and L≤t,v to denote the restriction of L≤t to the domain RH≤v∞ . Thus L≤t,v is a map from
RH≤v∞ to RH≤t∞ . In particular, if L is represented as a semi-infinite lower block triangu-
lar matrix, then L≤t,v corresponds to the t by v block row by block column sub matrix
(L)ij, i = 1, . . . , t, j = 1, . . . , v.

Sets are denoted by upper case script letters, such as S , whereas subspaces of an inner
product space are denoted by upper case calligraphic letters, such as S. The restriction of
a linear map L to a subspace S ∈ RH∞ is denoted by LS ; similarly, the projection of an
operator G ∈ Rp onto a subspace A ⊂ Rp is denoted by GA. We denote the adjoint of a

linear map L by L†. The most complicated expression that we use is of the form
[
L≤t,vS

]†
:

this denotes the adjoint of the map L≤t restricted to RH≤v∞ ∩ S.
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We denote the n-dimensional identity matrix and down-shift matrices by In and Zn,
respectively. In particular, Zn is a matrix with all ones along its first sub-diagonal and zero
elsewhere. We use ei to denote a standard basis element in Rn, and Eij to denote the matrix
with (i, j)th element set to 1 and all others set to 0.

3 RFD as Structured Approximation
Under standard assumptions [22], traditional controller synthesis methods within the frame-
work of model matching can be framed as linear inverse problems of the form

minimize
U∈RH∞

Ψ (U ;Y,L) (1)

where Y is the open loop response of the system, U is the Youla parameter, L is a suitably
defined linear map from the Youla parameter U to the closed loop response, and Ψ (·;Y,L) is
a performance metric that measures the size of the closed loop response (i.e., the size of the
deviation between Y and L(U)), such as the H2 or H∞ norm. We make this connection clear
in the following subsection and we also recall how to incorporate quadratically invariant [19]
distributed constraints on the controller into this framework.

Remark 1 We use this non-standard notation to facilitate comparisons with the structured
inference literature. In particular, this notation emphasizes that the optimal linear controller
synthesis task can be viewed as one of solving a linear inverse problem with “data” specified
by the open loop response Y of the system and the map L from the Youla parameter to the
closed loop response.

3.1 Convex Model Matching

P11

P21

P12

P22

K

wy

um

Figure 1: A diagram of the generalized plant defined in (2).

In order to discuss a broad range of model matching problems, we introduce the gener-
alized plant, a standard tool in robust and optimal control [22]. In particular, consider the
system described by

P =

[
P11 P12

P21 P22

]
=



A B1 B2

C1 0 D12

C2 D21 0


 (2)
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where Pij = Ci(zI − A)−1Bj + Dij. As illustrated in Figure 1, this system describes the
four transfer matrices from the disturbance and control inputs w and u, respectively, to the
controlled and measured outputs y and m, respectively. We make the (slightly modified)
standard orthogonality assumptions that

D12

[
C>1 D>12

]
=

[
0 ρuI

]

D>21

[
B1 D21

]
=

[
0 ρwI

] (3)

for some ρu, ρw ≥ 0. At times we separate the state component of the open and closed loop
responses from the components of these transfer matrices that measure control effort. To
that end, we define the state component of an element X to be the projection of X onto the
range of C1.

Letting u(z) = K(z)m(z) for a causal linear controller K ∈ Rp, the closed loop map
from the disturbance w to the controlled output y is given by the linear fractional transform
P11 − P12K(I − P22K)−1P21. A typical optimal control problem in this framework is then
formulated as

minimize
K∈Rp

‖P11 − P12K(I − P22K)−1P21‖
s.t. K(I − P22K)−1 ∈ RH∞

(4)

where ‖ · ‖ is a suitable norm, and the constraint ensures internal stability of the closed loop
system [22]. Notice however that the optimal control problem (4) is non-convex as stated.

When the open-loop plant is stable (we remark on the unstable case at the end of the
subsection), a standard and general approach to solving the optimal control problem (4) is
to convert it into a model matching problem through the Youla change of variables U :=
K(I − P22K)−1; the optimal controller K can then be recovered via K = (I + UP22)−1U .
The resulting convex optimization problem is then given by

minimize
U∈RH∞

‖P11 − P12UP21‖ , (5)

which is of the form of the linear inverse problem (1) if we take Y := P11, L = P12 ⊗ P21

(where (P12 ⊗ P21) (U) := P12UP21) and Ψ (U ;Y,L) := ‖Y − L(U)‖.
We also often want to impose a distributed constraint on the controller K by requiring

K to lie in some subspace S, which specifies information exchange constraints between the
sensors and actuators of the controller. It is known that a necessary and sufficient condition
for such a distributed constraint to be invariant under the Youla change of variables is that
it be quadratically invariant with respect to P22 [19–21].

Definition 1 (Quadratic Invariance) A subspace S is quadratically invariant (QI) with
respect to P22 if KP22K ∈ S ∀K ∈ S.

In particular, when a subspace S is QI with respect to P22, we have that K ∈ S if and
only if K(I − P22K)−1 ∈ S, allowing us to convert the general optimal control problem (1)
with the additional constraint that K ∈ S to the following convex optimization problem

minimize
U∈RH∞

Ψ (U ;Y,L) s.t. U ∈ S. (6)
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This optimization problem is again precisely of the form of the linear inverse problem (1)
save for the addition of the subspace constraint U ∈ S. This framework is fairly general
in that it allows for a unified treatment of all structured optimal control problems in which
the linear optimal structured controller can be computed via convex optimization [19, 21].
These include state and output feedback problems in either centralized or QI distributed
settings. Further, if the optimal control problem is centralized with respect to the H2, H∞
or L1 metrics, or is QI distributed with a finite horizon H2 cost, the linear optimal control
is globally optimal [21,22,29,30].

Remark 2 (Extension to Unstable Plants) The above discussion extends to unstable
plants through the use of an appropriate structure preserving Youla-Kucera parameterization
built around arbitrary coprime factorizations, which are always available. See [27,31,32] for
examples of such parameterizations, and [17] for an example of using such a parameterization
with a structure inducing penalty.

3.2 Architecture Design through Structured Solutions

We seek a modification of the optimal controller synthesis procedure to design the controller’s
architecture. We reiterate that by the architecture of a controller, we mean the actuators,
sensors, and communication links between them. In particular, we view the controller K as
a map from all potential sensors to all potential actuators, using all potential communication
links between these actuators and sensors. The architectural design task is that of selecting
which actuators, sensors and communication links need to be used to achieve a certain
performance level. This task is naturally viewed as one of finding a structured approximation
of the optimal controller (4) that utilizes all of the available architectural choices.

The components of the controller architecture being designed determine the type of struc-
tured approximation that we attempt to identify. In particular, each nonzero row of K(z)
corresponds to an actuator used by the controller, and likewise, each nonzero column cor-
responds to a sensor employed by the controller. Further sparsity patterns present within
rows/columns of the power series elements K(t) of K(z) can be interpreted as information
exchange constraints imposed by an underlying communication network between the sensors
and actuators. With these observations, it is clear that specific sparsity patterns in K have
direct interpretations in terms of the architectural components of the controller: nonzero
rows correspond to actuators, nonzero columns correspond to sensors, and additional spar-
sity structure corresponds to communication constraints.

Although we seek seek to identify a suitably structured controller K, for the computa-
tional reasons described in §3.1 it is preferable to solve a problem in terms of the Youla
parameter U as this parameterization leads to the convex optimization problem (6). There-
fore, in the following definition RFD problems are defined as a regularized version of the
model matching problem (6) with a penalty function added to the objective to induce suit-
able structure, rather than as a modification of the controller synthesis problem (4). In the
sequel, we justify that for architectural design problems of interest, the structure underlying
the controller K is equivalent to the structure underlying the Youla parameter U ; to that
end, we show that in the case of actuator, sensor, and/or QI communication topology de-
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sign,1 the structure of the Youla parameter U corresponds to the structure of the controller
K.

Definition 2 Let U, Y ∈ RH∞, and L : RH∞ → RH∞ be of compatible dimension. The
optimization

minimize
U∈RH∞

Ψ (U ;Y,L) + 2λΩ (U) s.t. U ∈ S (7)

is called a RFD optimization problem with cost function Ψ (·;Y,L) and penalty Ω (·).

Remark 3 (Static or Dynamic) With the exception of the centralized state-feedback set-
ting, it is known that the optimal linear controller is dynamic [22], and therefore restricting
our analysis to dynamic controllers is natural. In the centralized setting (given the equiva-
lence between static and dynamic state-feedback), once an appropriate actuation architecture2
is identified, traditional methods can then be used to solve for a static state-feedback controller
restricted to that architecture. Further as we show in §6, the dynamic controller synthesis
approach is amenable to analysis that guarantees optimal structure recovery.

We discuss natural costs Ψ (·;Y,L) and penalties Ω (·) in §4, and we focus now on justi-
fying why we can perform the structural design on the Youla parameter U rather than the
controller K.

Actuator/Sensor Design Recall that the actuators (sensors) that a controller K uses
are identified by the nonzero rows (columns) of K: the actuator (sensor) design problem
therefore corresponds to finding a controller K that achieves a good closed loop response and
that is sparse row-wise (column-wise). This corresponds exactly to finding a row (column)
sparse solution U to the RFD optimization problem (7). This is true because any subspace
D that is defined solely in terms of row (column) sparsity is QI with respect to any P22.
In particular, it is easily verified that if K ∈ D, then right (left) multiplication leaves D
invariant, i.e., KX ∈ D (XK ∈ D) for all compatible X. It then follows from Definition
1 that D is QI with respect to any plant P22. We can extend this analysis to incorporate
additional QI distributed constraints S by leveraging the results in [20]: in particular, if S
is QI with respect to P22, then so is D ∩ S.3

Joint Actuator and Sensor Design By virtue of the previous discussion joint actua-
tor and sensor design corresponds to finding a controller K that is simultaneously sparse
row-wise and column-wise. It follows immediately from the previous discussion that this
corresponds exactly to finding a simultaneously row and column sparse solution U to the

1We restrict ourselves to communications delays that satisfy the triangle inequality defined in [20]. This
assumption implies that information exchanged between sensors and actuators is transmitted along shortest
delay paths in the underlying communication graph.

2For a system to be centralized, there can be no communication constraints, and for it to be state-
feedback, there can be no sensing constraints, leaving only actuation architecture design as a possible RFD
task.

3In particular, since removing actuators does not change the communication delays between the remaining
actuators and sensors, if the delay based conditions in [20] hold when all actuators (sensors) are present they
also hold with any subset of them being present.
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RFD optimization problem (7). In particular, any subspace D defined solely in terms of row
and column sparsity is QI with respect to any plant P22, we can incorporate additional QI
distributed constraints S by leveraging the results in [20].

Communication Design In an analogous manner to the above, one can also associate
subspaces to structures corresponding to suitable information exchange constraints that a
distributed controller must satisfy. Recall in particular that the information exchange con-
straints between the sensors and actuators of a controller K are identified by the sparsity
structure found within the nonzero rows and columns of K. In [17], the first author showed
that a specific type of sparsity structure in K corresponds exactly to sensors and actuators
exchanging information according to an underlying communication graph. In particular,
given a communication graph between sensors and actuators with adjacency matrix Γ, a
distributed controller K can be implemented using the graph defined by Γ if the power series
elements K(t) of the controller satisfy supp

(
K(t)

)
⊆ supp (Γt−1).4 The interpretation of the

support nesting condition is that the delay from sensor j to actuator i is given by the length
of the shortest path from node j to node i in the graph defined by Γ. This support nesting
condition thus defines the distributed subspace constraint S in which K must lie – based
on the discussion in §3.1, one can pose the distributed controller synthesis problem as a
distributed model matching problem (6) if and only if S is QI with respect to P22. In light of
this, we consider the communication design task proposed in [17]: given an initial graph with
adjacency matrix ΓQI that induces a QI distributed subspace constraint S, what minimal
set of additional edges should be added to the graph to achieve a desired performance level.5
It is additionally shown in [17] that any communication graph constructed in this manner
results in a subspace constraint S that is QI with respect to P22. Therefore the structure
imposed on the controller K by an underlying QI communication graph corresponds exactly
to the structure imposed on the Youla parameter U .

Joint Communication, Actuator and/or Sensor Design By virtue of the previous
discussion and the results of [20], combining QI communication design with actuator and/or
sensor design still leads to the underlying structure of the controller K corresponding to the
underlying structure of the Youla parameter U .

Thus for architecture design problems the RFD task can be performed via a model
matching problem.

Example 1 Suppose that different RFD optimization problems are solved for a system with
three possible actuators and three possible sensors, resulting in the various sparsity patterns
in U(z) shown on the far right of Figure 2. It is easily seen by inspection that the resulting
sparsity patterns are QI. In particular Figures 2a) through 2c) correspond to centralized RFD
optimization problems (this can be seen from the full matrices in the center of the left hand

4We assume that K is square for simplicity; cf. [17] for the general case.
5It is shown in [17] that under mild assumptions on the plant P22, the propagation delays of P22 can

be used to define an adjacency matrix ΓQI that induces a distributed subspace constraint that is QI with
respect to P22.
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side), and 2d) to a RFD optimization problem subject to lower triangular constraints, a
special case of a nested information constraint.6

2
4

0 0 0
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5
2
4
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5
2
4

0 0 0
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5 ✓

2
4

0 0 0
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5

2
4

0 0 0
0 ⇤ ⇤
0 ⇤ ⇤

3
5
2
4
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5
2
4

0 0 0
0 ⇤ ⇤
0 ⇤ ⇤

3
5 ✓

2
4

0 0 0
0 ⇤ ⇤
0 ⇤ ⇤

3
5

2
4

0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

3
5
2
4
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3
5
2
4

0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

3
5 ✓

2
4

0 ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

3
5

2
4
⇤ 0 0
0 0 0
⇤ ⇤ ⇤

3
5
2
4
⇤ 0 0
⇤ ⇤ 0
⇤ ⇤ ⇤

3
5
2
4
⇤ 0 0
0 0 0
⇤ ⇤ ⇤

3
5 ✓

2
4
⇤ 0 0
0 0 0
⇤ ⇤ ⇤

3
5

a)#

b)#

c)#

d)#

Figure 2: Examples of QI sparsity patterns generated via a) actuator, b) sensor, and c) actua-
tor/sensor RFD procedures without any distributed constraints, and d) actuator RFD subject to
nested information constraints.

4 RFD Cost Functions and Regularizers

In this section we examine convex formulations of the RFD optimization problem (7) by
restricting our attention to convex cost functions Ψ (·;Y,L) and convex penalty functions
Ω (·).

4.1 Convex Cost Functions

Any suitable convex cost function Ψ (·;Y,L) can be used in (7): traditional examples from
robust and optimal control include the H2, H∞ [22] and L1 norms [30]. We focus on the H2

norm as a performance metric because it allows us to make direct connections between the
RFD optimization problem (7) and well-established methods employed in statistical inference
such as ordinary least squares, Ridge Regression [33], Group Lasso [34] and Group Elastic
Net [35].

We begin by introducing a specialized form of the model matching problem (6), and show
how state-feedback problems with H2 performance metrics can be put into this form.

Definition 3 Let U, Y ∈ RH∞, and L : RH∞ → RH∞ be of compatible dimension. The
optimization problem

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ρu‖U‖2
H2

s.t. U ∈ S (8)

is the H2 optimal control problem for a suitable control penalty weight ρu and a distributed
constraint S.

6Nested information constraints are a well studied class of QI distributed constraints, cf. [23–25] for
examples.
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In this definition, Y is the state component of the open loop response, and L is the
map from the Youla parameter to state component of the closed loop response. Explicitly
separating the cost of the state component ‖Y − L(U)‖2

H2
of the closed loop response from

the control cost ρu‖U‖2
H2

of the closed loop response allows us to connect the H2 RFD opti-
mization to several well-established methods in the inference literature. Before elaborating
on some of these connections, we provide two examples of standard control problems that
can be put into this form.

Example 2 (Basic LQR) Consider the basic LQR problem given by

minimize
u∈`2

∑∞
t=0 ‖Cxt‖2

`2
+ ‖Dut‖2

`2

s.t. xt+1 = Axt +But, x0 = ξ,
(9)

and assume that D>D = ρuI, for some ρu ≥ 0. Define ρ = ρu, X(t) = CAtξ for t ≥ 0,
U (t) = ut, and L(U) = −H ∗U , where H ∈ Rp with H(0) = 0, and H(t) = CAt−1B for t ≥ 1.
We can then rewrite the basic LQR problem in the form of optimization problem (8) (with
no distributed constraint S).

Example 3 (H2 State Feedback) Assume either that the generalized plant (2) is open-
loop stable or that the control problem is over a finite horizon. Let C2 = I and D21 = 0
in the generalized plant (2) such that the problem is one of synthesizing an optimal state-
feedback controller, and for clarity of exposition, assume that B1 is invertible.7 Define the
Youla parameterization for the controller synthesis problem (4) as follows [22]:

P̃12 = 1
z
P12, P̃21 = AP21 +B1, Ũ = K(I − P22K)−1P̃21,

with all other parameters remaining the same. Under this parameterization, the optimal
control problem (4) (with additional QI distributed constraint S) with performance metric
‖ · ‖2

H2
can be written as

minimize
Ũ∈RH∞

‖P11 − L
(
Ũ
)
‖2
H2

+ ρu‖Ũ‖2
H2

s.t. Ũ P̃−1
21 ∈ S, (10)

The optimal controllerK is then recovered from the solution to (10) as K = (I+Ũ P̃−1
21 P22)−1Ũ P̃−1

21 .
The state-feedback assumption and the choice of Youla parameterization ensure that P̃21 is
invertible in RH∞ and that K ∈ S.
Remark 4 A dual argument applies to H2 filter design by considering the “full-control”
setting, cf. [22] for more details.

As illustrated by Example 3, the H2 optimal control problem (8) is simply a more general
way of writing the H2 state feedback model matching problem – in Remark 7 we show how
H2 output feedback model matching problems can also be put in a similar form. Writing the
H2 problem as a linear inverse problem with a least squares like state cost and an explicitly
separated control cost already allows us to make connections to classical techniques from
statistical inference. These connections (along with others we make later in this section) are
summarized in Table 1. In order to keep the discussion as streamlined as possible, we make
these connections in the context of the Basic LQR problem presented in Example 2.

7The assumption that B1 is invertible simply implies that no component of the state is deterministic, and
can be relaxed at the expense of more complicated formulas.
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4.1.1 ρu = 0

In an inferential context, this is simply ordinary least squares, and is commonly used when
U∗ is not known a priori to have any structure. Further, the resulting estimate of U∗ is
unbiased, but often suffers from high error variance. Moving now to a control context, It
is easy to see that this setting corresponds to “cheap control” LQR, in which there is no
cost on ut – under suitable controllability and observability assumptions, the resulting state
trajectory is deadbeat, but the optimal control law is not necessarily unique.

4.1.2 ρu > 0

This corresponds to Ridge Regression or Tikhonov Regularization [33]. In an inferential
context, this regularizer has the effect of shrinking estimates towards 0 – this introduces bias
into the estimator, but reduces its variance, and is often a favorable tradeoff from a statistical
perspective. From a linear algebraic perspective, this is a commonly used technique to
improve the numerical conditioning of an inverse problem. Once again, the interpretation
in RFD is clear: this corresponds to standard LQR control with R = ρI; the parameter ρ
allows for a tradeoff between control effort and state deviation. The optimal control action
is then unique and the resulting state trajectory is generally not deadbeat.

4.2 The H2 RFD Optimization Problem with an Atomic Norm
Penalty

Recall that our strategy for designing controller architectures is to augment the traditional
model matching problem (6) with a structure inducing penalty, resulting in the RFD op-
timization problem (7). In light of the discussion of the previous subsection, we further
specialize the RFD optimization problem to have an H2 performance metric and an atomic
norm penalty ‖·‖A .

Definition 4 Let U, Y ∈ RH∞ and L : RH∞ → RH∞ be of compatible dimension. The
optimization problem

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖A s.t. U ∈ S (11)

is called the H2 RFD optimization problem with parameters (ρ, λ), distributed constraint S,
and atomic norm penalty ‖·‖A .

There are two components of note in this definition. The first is that ρ need not be
equal to ρu, the control cost parameter of the original non-penalized control problem (8); the
reasons why a different choice of ρ may be desirable are explained in §6. The second is the
use of an atomic norm penalty function to induce structure. Indeed, if one seeks a solution
U∗ that can be composed as a linear combination of a small number of “atoms” A , then a
useful approach, as described in [3, 4], [5, 6], [7], to induce such structure in the solution of
an inverse problem is to employ a convex penalty function that is given by the atomic norm
induced by the atoms A [2]. Examples of the types of structured solutions one may desire
in linear inverse problems include sparse, group sparse and signed vectors, and low-rank,
permutation and orthogonal matrices (see [7] for a more extensive list).
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Specifically, if one assumes that

U =
r∑

i=1

ciAi, Ai ∈ A , ci ≥ 0 (12)

for a set of appropriately scaled and centered atoms A , and a small number r relative to
the ambient dimension, then solving

minimize
U

Ψ (U ;Y,L) + 2λ‖U‖A (13)

with the atomic norm ‖ · ‖A given by the gauge function8

||U ||A : = inf{t ≥ 0
∣∣U ∈ tconv(A )}

= inf{∑A∈A cA
∣∣U =

∑
A∈A cAA, cA ≥ 0} (14)

results in solutions that are both consistent with the data as measured in terms of the cost
function Ψ (·;Y,L), and that are sparse in terms of their atomic descriptions, i.e., are a
nonnegative combination of a small number of elements from A . Note that the unit ball of
the atomic norm is given by the convex hull of its constituent atoms – as such, atomic norms
are convex functions.

Our discussion in §3.2 on designing controller architecture by finding structured solutions
to the model matching problem (6) suggests natural atomic sets for constructing suitable
penalty functions for RFD. We make this point precise by showing that actuator, sensor,
and/or communication delay design can all be performed through the use of a purpose-
fully constructed atomic norm. We introduce several novel penalty functions for controller
architecture design, most notably for the simultaneous design of actuator, sensor and commu-
nication delays. Further, all regularizers that have been considered for control architecture
design in the literature (cf. [1, 12–17], among others) may be viewed as special instances of
the atomic norms described below.

In what follows, the atomic sets that we define are of the form

A =
⋃

A∈M

A ∩ kABH2 , (15)

for M an appropriate set of subspaces, {kA} a set of normalization constants indexed by the
subspaces A ∈M , and BH2 the H2 unit norm ball; see the concrete examples below. Note
that we normalize our atoms relative to the H2 norm as this norm is isotropic; hence this
normalization ensures that no atom is preferred over another within a given family of atoms
A . We use ns and na to denote the total number of sensors and actuators, respectively,
available for the RFD task.

4.2.1 Actuator/Sensor Norm

For the Actuator Norm, we choose the atomic set to be transfer functions in RHna×ns
∞ that

have exactly one nonzero row with unit H2 norm, i.e., suitably normalized Youla parameters
8If no such t exists, then ‖X‖A =∞.
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that use only one actuator. Specifically, the set of subspaces (15) in this context is

Mact :=
{
A ⊂ RHna×ns

∞
∣∣A has one nonzero row

}
, (16)

leading to the atomic set

Aact :=
{
eiV

∣∣V ∈ RH1×ns
∞ , ‖V ‖H2 = 1

}
. (17)

The resulting atomic norm is then given by

‖U‖act =
na∑

i=1

‖e>i U‖H2 . (18)

In particular, each “group” corresponds to a row of the Youla parameter. For the Sensor
Norm, we similarly choose transfer functions with exactly one nonzero column with unit H2

norm, leading to the atomic norm

‖U‖sns =
ns∑

i=1

‖Uei‖H2 . (19)

Both of these norms are akin to a Group Lasso penalty [34].

4.2.2 Joint Actuator and Sensor Norm

Conceptually, each atom corresponds to a controller that uses only a small subset of actuators
and sensors. As each row of the Youla parameter U corresponds to an actuator and each
column to a sensor, the atomic transfer matrices have support defined by a submatrix of
U(z). Specifically, we choose atoms with at most ka actuators and ks sensors:

Mact+sns :=
{
A ⊂ RHns×na

∞
∣∣ supp (A) is a submatrix

with at most ka nonzero rows and ks nonzero columns} (20)

The scaling terms kA in the definition of the atomic set (15) are given by kA = (card(A) + .1)−
1
2 ,

and are necessary as some of the atoms are nested within others – the additional .1 can be
any positive constant, and controls how much an atom of larger cardinality is preferred over
several atoms of lower cardinality. The resulting Actuator+Sensor Norm is then constructed
according to (15) and is akin to the latent Group Lasso [36].

4.2.3 Communication Link Norm

As described in §3.2, the communication design task is to select which additional links to
introduce into an existing base communication graph. An atom in Acomm corresponds to
such an additional link. We provide an example of such an atomic set for a simple system,
and refer the reader to [17] for a more general construction. In particular, consider a three
player chain system, with physical topology illustrated in Figure 3, such that P22 lies in the
subspace

S :=
1

z



∗ 0 0
0 ∗ 0
0 0 ∗


⊕ 1

z2



∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


⊕ 1

z3
Rp,
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1 2 3
Figure 3: Three player chain system

where ∗ is used to denote R to reduce notational clutter. We consider an existing commu-
nication graph matching the physical topology illustrated in Figure 3 so that the induced
distributed subspace constraint, as described in §3.2, is given precisely by S. It can be
checked that S is then QI with respect to P22. We consider choosing from two additional
links to augment the communication graph: a directed link from node 1 to node 3, and
a directed link from node 3 to node 1. Then Mcomm = {A13,A31}, where its component
subspaces are given by

A13 = 1
z2




0 0 0
0 0 0
∗ 0 0


 ,A31 = 1

z2




0 0 ∗
0 0 0
0 0 0


 .

In particular, each subspace Aij corresponds to the additional information available to the
controller uniquely due to the added link from sensor j to actuator i. The resulting Com-
munication Link Norm ‖·‖comm is then constructed according to (15) with all normalization
constants kA = 1. We note that this penalty is also akin to the latent Group Lasso [36].

4.2.4 Joint Actuator (and/or Sensor) and Communication Link Norm

This penalty can be viewed as simultaneously inducing sparsity at the communication link
level, while further inducing row sparsity as well. The general strategy is to combine the
actuator and communication link penalties in a convex manner. We suggest two such ap-
proaches, one based on taking their weighted sums and the other based on taking their
“weighted maximum.” In particular, we define the joint actuator plus communication link
penalty to be:

‖U‖act+comm = (1− θ) ‖U‖comm + θ ‖U‖act , (21)

for some θ ∈ [0, 1], and the max actuator/communication link penalty to be

‖U‖max{act,comm} = max {(1− θ) ‖U‖comm , θ ‖U‖act} , (22)

for some θ ∈ [0, 1]. The analogous Sensor and Communication Link penalties, as well as
Sensor+Actuator and Communication link penalties can be derived by replacing Aact with
either Asns or Aact+sns.

4.3 Further Connections with Structured Inference

As already noted in §4.1, by choosing different values of ρ for λ = 0 we are able to recover
control-theoretic analogs to Ordinary Least Squares and Ridge Regression [33]. Noting that
the actuator norm penalty (18) is akin to the Group Lasso [34], we now discuss how control
theoretic analogs of the Group Lasso and Group Elastic Net [35] can be obtained by setting
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Parameters Stats Prob-
lem

Stats Struc-
ture

Stats Tradeoff RFD Prob-
lem

RFD Struc-
ture

RFD Tradeoff

λ = 0, ρ = 0 Ordinary
Least
Squares

None N/A Cheap Con-
trol LQR

Deadbeat re-
sponse

N/A

λ = 0, ρ > 0 Ridge Re-
gression

Small Eu-
clidean norm

Bias, Variance LQR Small control
action

State deviation,
Control effort

λ > 0, ρ = 0 Group
LASSO

Group spar-
sity

Bias, Variance,
Model complexity

RFD LQR Sparse actua-
tion

State deviation,
Control effort,
Actuation com-
plexity

λ > 0, ρ > 0 Group Elas-
tic Net

Correlated
group spar-
sity

Bias, Variance,
Model complexity

RFD LQR Correlated
sparse actua-
tion

State deviation,
Control effort,
Actuation com-
plexity

Table 1: A dictionary relating various SLIP problems in statistical inference and Actuator RFD
problems.

λ > 0 in (11) and using the Actuator Norm (18) penalty – these connections are summarized
in Table 1. To simplify the discussion, we once again consider these connections in the context
of the basic LQR problem introduced in Example 2, now augmented with the actuator norm
penalty (18).

In structured inference problems, the setting λ > 0, ρ > 0 corresponds to Group Elastic-
Net regression. If the groups are single elements, this becomes the traditional Elastic Net
and Lasso. The singleton group setting with λ > 0, ρ = 0 corresponds to Lasso regression,
and this inference method is employed when the underlying model is known to be sparse –
in particular, the Lasso penalty is used to select which elements U∗i of the model are non-
zero [3, 4]. Continuing with the singleton group setting, if both λ > 0 and ρ > 0, then the
corresponding inferential approach is called the Elastic Net. In addition to the sparsity-
inducing properties of the Lasso, the Elastic Net also encourages automatic clustering of the
elements [35] – in particular, ρ > 0 encourages the simultaneous selection of highly correlated
elements (two elements U∗i and U∗j are said to be highly correlated if L(U∗i ) ≈ L(U∗j )). Thus
ρ can be seen as a parameter that can be adjusted to leverage a prior of correlation in
the underlying measurement operator L. These interpretations carry over to more general
groups in a natural way.

In RFD, this setting corresponds to our motivating Example 2 augmented with the actu-
ator norm penalty, in which we design the controller’s actuation architecture. As each atom
corresponds to an actuator, this RFD procedure then selects a small number of actuators.
Porting the clustering effect interpretation from the structured inference setting, we see that
ρ promotes the selection of actuators that have similar effects on the closed loop response. In
particular, this suggests that for systems in which no such similarities are expected, ρ should
be chosen to be small (or 0) during the RFD process, even if the original LQR problem had
non-zero control cost.
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5 The RFD Procedure

5.1 The Two-Step Algorithm

We now introduce the convex optimization based RFD procedure for the co-design of an
optimal controller and the architecture on which it is implemented. The remaining com-
putational challenge is the possibly infinite dimensional nature of the RFD optimization
problem (7). To address this issue, we propose a two step procedure: first, a finite dimen-
sional approximation of optimization problem (7) is solved to identify a potential controller
architecture and its defining subspace constraint D. Once this architecture has been identi-
fied, a traditional (and possibly infinite dimensional) optimal control problem (1) with Youla
prameter restricted to lie in D∩S is then solved – in particular, in many interesting settings
the resulting optimal controller restricted to the designed architecture can then be computed
exactly leveraging results from the optimal controller synthesis literature [22–28].

Formally, we begin by fixing an optimization horizon t and a controller order v. We
suggest initially choosing t and v to be small (i.e., 2 or 3), and then gradually increasing
these parameters until a suitable controller architecture/control law pair is found. Our
motivations for this approach are twofold: (i) first, selecting a small horizon t and small
controller order v leads to a smaller optimization problem that is computationally easier to
solve; and (ii) as we show in the next section, a smaller horizon t and smaller controller
order v can actually aid in the identification of optimal controller architectures. For a given
performance metric Ψ (·;Y,L) and atomic norm penalty ‖ · ‖A, the two step RFD procedure
consists of an architecture design step and an optimal control law design step:

1) Architecture design: Select the regularization weight λ and solve the finite dimen-
sional RFD optimization problem

minimize
U∈RH≤v

∞ ∩S
Ψ
(
U ;Y ≤t,L≤t,v

)
+ 2λ ‖U‖A (23)

The actuators, sensors and communication links defining the designed architecture are speci-
fied by the non-zero atoms that constitute the solution Û to optimization problem (23). The
architectural components employed in Û in turn define a subspace D(Û) which corresponds
to all controllers (within the Youla parameterization) that have the same architecture as Û .9

2) Optimal control law design: Solve the infinite dimensional optimal control problem
with Youla parameter additionally constrained to lie in the designed subspace D(Û) ∩ S:

minimize
U∈RH∞

Ψ (U ;Y,L) s.t. U ∈ D(Û) ∩ S. (24)

If the resulting controller architecture and controller performance are acceptable, the RFD
procedure terminates. Otherwise, adjust λ accordingly to vary the tradeoff between ar-
chitectural complexity and closed loop performance. If no suitable controller architec-
ture/controller can be found, increase t and v and repeat the procedure.

Remark 5 (Removing Bias) The method of solving a regularized optimization problem to
identify the architectural structure of a controller and then solving a standard model matching

9As described in §3, the subspace D(Û)∩S is QI by construction, and hence this subspace also corresponds
to all controllers with the same architecture as K̂ = (I + ÛP22)−1Û .
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problem restricted to the identified architecture is analogous to a procedure that is commonly
employed in structured inference. In structured inference problems, a regularized problem
is solved first to identify a subspace corresponding to the structure of an underlying model
U∗. Subsequently, a non-regularized optimization problem with solution restricted to that
identified subspace is solved to obtain an unbiased estimator of the underlying model U∗.

5.2 Simultaneous Actuator, Sensor and Communication RFD

In this subsection we demonstrate the full power and flexibility of the RFD framework in
designing a distributed controller architecture, jointly incorporating actuator, sensor and
communication link design. In particular we consider a plant with eleven subsystems with
topology as illustrated in Figure 4. The solid lines correspond to the physical interconnection
between subsystems. Choosing C2 = B2 = I, the adjacency matrix of this graph then defines
the support of the A matrix in the state space realization of the generalized plant (2), as
well as the required communication links between nodes such that the distributed constraint
is QI under P22 [17, 20].

Figure 4: Topology of system considered for RFD example. Solid lines indicate both physical
interconnections and existing communication links between controllers. Dashed lines correspond to
possible additional edges to be added.

The non-zero entries ofA were generated randomly and normalized such that |λmax (A) | =
.999. The remaining state space parameters of the generalized plant (2) satisfyD12

[
C>1 D>12

]
=[

0 25I
]
, and D>21

[
B1 D21

]
=
[
0 .01I

]
, with C1C

>
1 = 100I and B>1 B1 = I.

For the RFD task, we choose an H2 norm performance metric; we allow each node to be
equipped with an actuator and/or a sensor (for a total of 11 possible actuators and sensors),
and we allow the communication graph to be augmented with any subset of the interconnec-
tions denoted by the dashed lines in Figure 4, in addition to the already present links given
by the solid lines. This leads to 536,870,911 different possible controller architectures.

We solved the RFD optimization (43) with atomic norm ‖·‖act+sns+comm as defined in
§4.2, with weighting parameter θ = .75 and with ks = ka = 1. We performed the RFD
procedure for two different horizon/order pairs: t = 4 and v = 2, as well as t = 6 and v = 3;
for these latter horizon/order values acceptable tradeoffs between architecture complexity
and closed loop performance were identified, and hence the RFD procedure terminated.
For each horizon/order pair (t, v), we vary λ, and for each resulting optimal solution Û ,
we identified the designed architecture and corresponding subspace D(Û). We then used
the method from [27] to exactly solve the resulting non-regularized distributed H2 model
matching problem with subspace constraint D(Û). Note that the Youla parameter solving
this non-regularized problem is not restricted to have a finite impulse response. In particular,
we can compute the optimal Youla parameter and the corresponding optimal controller
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restricted to the architecture underlying Û in a computationally tractable fashion because
we guarantee that the subspace corresponding to the designed architecture is QI, as per the
discussion in Section 4.

For horizon t = 6 and order v = 3, the resulting architectural complexity is plotted
against the closed loop norm of the system in Figure 5. As λ is increased, the architectural
complexity (i.e. the number of actuators, sensors and communication links) decreases, but
at the expense of deviations from the performance achieved by the controller that uses all
of the available architectural resources. We also show the resulting architecture for λ = 500
in Figure 6: as can be seen, a non-obvious combination of eight actuators, eight sensors
and five additional communication links are chosen, resulting in only a 0.71% degradation
in performance over the distributed controller using all eleven actuators, eleven sensors and
seven additional communication links.
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Figure 5: A small degradation in closed loop performance allows for a significant decrease in archi-
tectural complexity.

Figure 6: Resulting architecture for λ = 500: despite only using eight actuators (orange squares),
eight sensors (blue triangles) and five additional communication links (green arrows), the perfor-
mance only degraded by 0.71% relative to the distributed controller using all eleven actuators, eleven
sensors and seven communication links.

As this example shows, the RFD procedure is effective at identifying simple controller
architectures that approximate the performance of a controller that maximally utilizes the
available architectural resources. In the next section, we offer some theoretical justification
for the success of our procedure by suitably interpreting the RFD optimization problem (7)
in the context of approximation theory and by making connections to analogous problems
in structured inference.
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6 Recovery of Optimal Actuation Structure
This section is dedicated to the analysis of the H2 RFD optimization problem (11) with no
distributed constraint, actuator norm penalty (18), and Y and L as given in Example 3 – a
nearly identical argument applies to a sensor norm regularized problem. We discuss how to
extend the analysis to output feedback and distributed problems at the end of the section.

Viewing the model matching problem (6) as a linear inverse problem makes it clear that
designing a structured controller is akin to obtaining a structured solution to a linear inverse
problem. The problem of obtaining structured solutions to linear inverse problems arises
prominently in many contexts, most notably in statistical estimation. In that setting, one
posits a linear measurement model10

Y = L(U∗) +W, (25)

where Y is the vector of observations, L is the measurement map, U∗ parametrizes an
underlying model and W is the measurement error. The linear model (25) also has an
appealing interpretation from a control-theoretic perspective. In particular, letting Y ∈
RH∞ be the state component of the open loop response of a LTI system, U∗ ∈ RH∞ be a
suitably defined Youla parameter, and L : RH∞ → RH∞ be the map from Youla parameter
to the state component of the closed loop response, it is then immediate that

W := Y − L(U∗) (26)

represents the state component of the closed loop response achieved by the controller U∗.
Table 2 summarizes the correspondence between these two perspectives.

Parameter Structured Controller Design Structured Inference
Y Open loop system Observations
L Map to closed loop Measurement map
U∗ Desired controller Underlying model
W Closed loop response Measurement noise

Table 2: Interpretation of parameters in Structured Controller Design and Structured Inference.

This conceptual connection suggests a novel interpretation of the role of the closed loop
response W achieved by a controller U∗. In an inferential context, since W corresponds to
measurement noise, a smaller W makes the task of identifying the structure of the under-
lying model U∗ much easier, as the measurements are more accurate. In a similar spirit,
we demonstrate that structured controller design is easier (via the solution to an RFD op-
timization problem (7)) if the corresponding state component of the closed loop response is
small. Thus the state component of the closed loop response of the system plays the role of
noise when trying to identify the structure of a suitably defined controller U∗. In the sequel,
we describe an appropriate notion of smallness for the state component of the closed loop
response in the context of designing structured controllers.

The remainder of the discussion in this section builds on prominent results from the struc-
tured inference literature [3–6]. The flavor of these results is somewhat non-standard in the

10We purposefully use non-standard notation to facilitate comparisons between RFD and SLIP.
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controls literature, and we therefore pause briefly to frame the setup in this section appro-
priately and to discuss how the results of this section should be interpreted. The main result
of this section proceeds by assuming that there exists an architecturally simple controller
U∗ (i.e., one with a small number of actuators) that achieves a good closed loop response,
(i.e., that achieves a small W as defined in (26)). Under suitable conditions, Theorems 1
and 2 state that the architectural structure of U∗ can be recovered via tractable convex
optimization using the RFD procedure. These conditions are phrased in terms of quantities
associated to U∗ which are typically unknown in advance – however, these conditions are
not meant to be checked prior to solving a RFD optimization problem. Although the results
are stated in terms of a nominal controller U∗, they should be interpreted as describing the
properties satisfied by controller architectures identified via the RFD procedure of §5. In
particular, the RFD procedure requires solving RFD optimization problems across a range
of controller orders v, optimization horizons t and regularization weights λ: this process
leads to a set of controller architectures being identified. Our results allow a practitioner
to be confident that all controller architectures satisfying the conditions of our theorems –
i.e., those that have a small number of actuators and that achieve a small closed loop state
response – are included in this set of identified controller architectures. In this way, the RFD
procedure provably identifies good controller architectures, should they exist.

We study finite dimensional variants of the H2 RFD optimization problem (11) with
the actuator norm penalty (18), and show that such finite dimensional approximations are
sufficient to identify the structure of a desired controller U∗. In particular, we truncate the
optimization problem (11) to a finite horizon t by restricting Y − L(U) ∈ RH∞ to the first
t elements of its impulse response, and to a finite controller order v by restricting U to lie
in RH≤v∞ . The resulting optimization problem is thus finite dimensional, and corresponds
to the first step of the RFD procedure defined in the previous section. At this point, it
is convenient to introduce the temporally truncated version of (26) for a fixed optimization
horizon t and controller order v:

W≤t = Y ≤t − L≤t,t(U≤t∗ )
= Y ≤t − L≤t,v(U≤v∗ )− T≤t,v (27)

with
T≤t,v := L≤t,t

(
U≤t∗ − U≤v∗

)
(28)

corresponding to the effect of the “tail” of U∗ on the state component W≤t of the truncated
closed loop response.

The flexibility in the choice of the optimization horizon t and controller order v will be
the focus of much of our discussion. In particular, it is of interest to find the smallest t
and v for which we can guarantee that the RFD procedure recovers the structure underlying
U∗ – the smaller the horizon and controller order, the smaller the size of the optimization
problem that needs to be solved. Perhaps counter-intuitively, we show that larger t and v
do not necessarily help in recovering the structure of an underlying parameter U∗. We make
this statement precise in what follows, but again drawing on intuition from the structured
inference literature, we note that increasing v in RFD is analogous to increasing the allowed
model complexity when solving an inference problem: if the model class is too rich, we risk
over-fitting and thus obfuscating the structure of the underlying model U∗.
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Our goal is to prove that the solution Ũ to the finite dimensional H2 RFD optimization
problem

Ũ = argmin
U∈RH≤v

∞

‖Y ≤t + L≤t,v(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖act (29)

has the same architectural structure as U∗ for appropriately chosen t and v. To show this,
we study the solution Û to the following architect optimization problem:

Û = argmin
U∈RH≤v

∞

‖Y ≤t + L≤t,v(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖act
s.t. U ∈ A∗

(30)

where A∗ is a subspace of Youla parameters U with the property that a row of U∗ being zero
implies that the corresponding row of U is zero. In words, A∗ may be viewed as the set of
Youla parameters corresponding to actuation schemes matching the actuation scheme of U∗.
We also define M∗ ⊂Mact, with Mact defined as in (16), to be

M∗ := {A ∈Mact | (U∗)A 6= 0} . (31)

In words, the elements of M∗ correspond to actuation schemes that use a single actuator,
where these actuators are defined by the nonzero rows of the desired controller U∗.

We show under suitable conditions on t, v, U∗ and L≤t,v that Û = Ũ ; that is to say that
the architect solution Û is also the unique optimal solution to the RFD optimization problem
(29) without the additional constraint U ∈ A∗. As a result, since Û is constrained to lie in
A∗, the solution to the RFD optimization problem Ũ also lies in A∗ and hence has the same
architectural structure as U∗. We emphasize that at no stage during the RFD procedure
described in §5 do we require knowledge of A∗ and M∗ – the investigation of the architect
problem (30) is only a theoretical tool used to prove structural recovery results.

6.1 Identifiability Conditions in Control

We begin by introducing two restricted gains in terms of the subspace A∗ and its orthogonal
complement A⊥∗ . In order to do so, we introduce the dual norm to ‖·‖act, which is given by

‖U‖?act = max
A∈Mact

‖UA‖H2 . (32)

These restricted gains are then

α≤t,v := min
∆

∥∥∥∥
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)

∥∥∥∥
?

act
s.t. ‖∆‖?act = 1, ∆ ∈ A∗ ∩RH≤v∞

(33)

β≤t,v := max

∥∥∥∥
[
L≤t,vA⊥∗

]†
L≤t,vA∗ (∆)

∥∥∥∥
?

act
s.t. ‖∆‖?act ≤ 1, ∆ ∈ A∗ ∩RH≤v∞ .

(34)

The minimum gain α≤t,v is a quantitative measure of the injectivity of the operator
L≤t,v × √ρI restricted to the subspace A∗. Intuitively, it characterizes the distinctions
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among the effects of the different actuators within A∗. The maximum gain β≤t,v, on the
other hand, is a measure of how different the effects of actuators in A∗ are from those of
actuators in A⊥∗ .

We can already see some immediate implications of different choices of the horizon t
and and controller order v on these quantities. In particular, α≤t,v is non-increasing in the
controller order v. This minimum gain’s dependence on the horizon t is more subtle. Define
the mixing time of M∗ to be

τM∗ := max
{
t ∈ Z+

∣∣ [L≤tA
]†
L≤tB = 0, ∀A 6= B ∈M∗

}
. (35)

If no t exists such that the condition within the max {·} is satisfied, we set τM∗ = 0. The
mixing time τM∗ measures how long it takes for the effects of the distinct actuators used by
U∗ to overlap, or mix, in the closed loop response. Consequently the minimum gain α≤t,v is
non-decreasing in t so long as t ≤ τM∗ , i.e., so long as t is sufficiently small that the effects
of the different actuators used by U∗ do not overlap. We then have the following lemma:

Lemma 1 Let τM∗ be as defined in (35). Then

α≤t,v = ρ+ min
A∈M∗

σmin

([
L≤t,vA

]†
L≤t,vA

)
(36)

for all 1 ≤ t ≤ τM∗. In particular, α≤t,v is non-decreasing in t for all 1 ≤ t ≤ τM∗.

Proof: It is easily verified that for A 6= B ∈M∗ and t ≤ τM∗ , we have
[
L≤t,vA

]†
L≤t,vB = 0,

from which (36) follows. To see that α≤t,v as given in (36) is non-decreasing in t, it suffices
to note that [

L≤t+1,v
A

]†
L≤t,vA =

[
L≤t,vA

]†
L≤t,vA , (37)

leading to the conclusion that
[
L≤t+1,v
A

]†
L≤t+1,v
A =

[
L≤t,vA

]†
L≤t,vA +

[
L≤t+1,v
A − L≤t,vA

]† (
L≤t+1,v
A − L≤t,vA

)
. (38)

The result follows by noting that the final term in this expression is positive semidefinite.

In particular, this result suggests that actuation schemes with more evenly distributed
actuators (i.e., those with larger mixing times τM∗ (35)) are easier to identify.

The maximum gain β≤t,v, however, is clearly seen to be non-decreasing both in the
controller order v and the horizon t. This is consistent with our interpretation of β≤t,v as
a measure of similarity between actuators: as either v or t increase, there is more time for
the mixing of the actuators’ control actions via the propagation of dynamics in the system,
increasing their worst-case “similarity.” We now assume that the following identifiability
condition is satisfied.

Assumption 1 (Identifiability) There exist 1 ≤ v ≤ t <∞ such that

β≤t,v

α≤t,v
=: δ ∈ [0, 1) . (39)
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In light of the previous discussion, it is immediate that a larger controller order v decreases
the likelihood of the identifiability condition being satisfied, and should therefore be taken
as small as possible. The effect of increasing the horizon t is less clear, but we see that it
may help if the minimum gain α≤t,v increases sufficiently fast with t relative to the increase
in the gain β≤t,v with respect to t – further there is no need to increase t beyond the mixing
time τM∗ .

In the inference literature, the analog of these identifiability assumptions are given by
conditions known as the restricted eigenvalue condition [37] and the restricted isometry prop-
erty [38]. In the sequel, we give an example of deterministic and structured state space
matrices that satisfy these identifiability conditions. Specifically, we focus on systems (2)
that have block diagonal B2 and C1 matrices (i.e., decoupled actuators and state costs), and
block banded state matrices A (i.e., locally coupled dynamics).

Remark 6 Notice that if L≤t,v = I, then α≤t,v ≥ 1, β≤t,v = 0 and δ = 0. These conditions
are satisfied if B = C = I and v = t = 1 in Example 2 (Basic LQR), or if C1 = B2 = I
and v = 1, t = 2 in Example 3 (H2 State Feedback). Thus sufficiently small values of v
and t ensure that condition (39) holds. However, the resulting optimization problem only
incorporates low order effects of the dynamics (as encoded in L≤t,v) in the RFD optimization
problem, suggesting that t and v should be also be chosen large enough to sufficiently capture
the dynamics of the system. This observation and Lemma 1 motivate our suggestion in
Section 5 to begin with small horizon t and controller order v and to then gradually increase
these values until a suitable controller architecture/control law pair is found.

6.2 Sufficient Conditions for Recovery

The following theorem provides sufficient conditions for (i) the architect solution Û to be
the unique optimal solution to the finite dimensional RFD optimization (29), and (ii) an
actuator of the desired controller, identified by a subspace A ∈M∗, to be identified by the
RFD procedure.

Theorem 1 (Structural Recovery) Fix a horizon 1 ≤ t < ∞, and a controller order
1 ≤ v ≤ t such that Assumption 1 holds. If

λ > δ
1−δ

(∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+ ρ

∥∥U≤v∗
∥∥?

act

)
+ 1

1−δ

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
(40)

we have that Û as defined in (30) is the unique optimal solution to (29), and that the row
support of Û is contained within the row support of U∗. Further if A ∈M∗ and

‖(U≤v∗ )A‖H2 >
1
α

(
λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+ ρ

∥∥U≤v∗
∥∥?

act

)
, (41)

then ÛA 6= 0.
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The condition (40) states that, under suitable identifiability assumptions, the regulariza-
tion weight λ needs to be sufficiently large to guarantee that the architect solution Û is also
the solution to (30). However, this can always be made to hold by choosing λ sufficiently
large so that Û = Ũ = 0. The second condition (41) provides an upper bound on the values
of λ for which a specific actuator (i.e., a specific component (U≤v∗ )A, A ∈M∗) is identified
by the architect solution Û . The following corollary then guarantees the recovery of M∗.

Corollary 1 Let µ := minA∈M∗ ‖(U≤v∗ )A‖H2, and suppose that the open interval

Λ :=


 δ

1−δ

[∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+ ρ

∥∥U≤v∗
∥∥?

act

]
+

∥∥∥∥∥
[
L≤t,v

A⊥∗

]†
(W≤t+T≤t,v)

∥∥∥∥∥
?

act
1−δ ,

α≤t,vµ−
∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
− ρ

∥∥U≤v∗
∥∥?

act

) (42)

is non-empty. Then the solution Ũ to the RFD optimization (29), with any regularization
weight λ chosen within Λ, has row support equal to that of U∗.

Note that it is useful to have a given architecture be identifiable for a range of regular-
ization weights λ, as prior information about the values needed to specify (42) are typically
not available. We exploited this fact when we defined the RFD procedure in Section 5 by
suggesting that λ be varied until a suitable architecture/control law pair is identified. This
corollary also makes explicit that larger values of ρ shrinks the range of λ for which the RFD
procedure is successful. It also shows that larger T≤t,v tail terms (28) are deleterious to the
performance of the RFD procedure as well – therefore although we previously stated that
the controller order v should be chosen as small as possible, it should not be so small that
the tail term T≤t,v is too large.

Remark 7 (Extension to Output Feedback) A similar argument applies to the output
feedback problem, but at the expense of more complicated formulas. In particular the H2 RFD
optimization takes the form

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ‖F(U)‖2
H2

+ 2λ ‖U‖act , (43)

for Y = P11, L(U) = P12UP21, and F(U) =
[
P12UD21 D12UP21 D12UD21

]
. Notice that if

D12 and D21 are set to 0 in the RFD optimization problem (43), we recover an optimization
problem of exactly the same form as (11) with ρ = 0, in which case the analyses of this
section and the next section are applicable.

Remark 8 (Extension to Distributed Constraints) For the purposes of analysis, the
additional constraint that U ∈ S can be incorporated by considering the restriction of L to
S, resulting in a centralized problem (cf. [19] for an example of how this can be done).
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6.3 A RFD Signal to Noise Ratio

Theorem 1 as stated does not yet provide an immediate interpretation of the effect of the
choices of the horizon t and the controller order v on the performance of the RFD procedure.
In order to better understand the effects of the horizon t and controller order v on the success
of the RFD procedure, we describe more interpretable bounds on α≤t,v and β≤t,v.

Lemma 2 Fix 1 ≤ t < ∞ and 1 ≤ v ≤ t. The parameters α≤t,v and β≤t,v, as defined in
equations (33) and (34), can be bounded from below and above, respectively, as follows:

α≤t,v ≥ ρ+ γ≤t,v, (44)

where

γ≤t,v := min
B⊆M∗,|B|≥1

max
A∈B

[
σmin

([
L≤t,vA

]†
L≤t,vA

)
−

∑

B6=A∈B

σmax

([
L≤t,vA

]†
L≤t,vB

)]
(45)

and

β≤t,v ≤ max
A∈(Mact\M∗)

∑

B∈M∗

σmax

([
L≤t,vA

]†
L≤t,vB

)
. (46)

Consequently, we can upper bound the ratio (39) as

δ ≤ β≤t,v

ρ+ γ≤t,v
. (47)

In particular, it is a straightforward consequence of Lemma 1 that for all t ≤ τM∗ (where
the mixing time τM∗ is as in (35)), the intermediate quantity γ≤t,v, as introduced in Lemma
2, is given by

γ≤t,v = min
A∈M∗

σmin

([
L≤t,vA

]†
L≤t,vA

)
,

and is non-decreasing in t. Further it is easily verified that the bounds (44), (46) and (47)
can be taken with equality if v = 1, as each L≤t,1A is isomorphic to a column vector.

The bounds computed in Lemma 2 can be combined with the sufficient conditions of
Theorem 1 to describe sufficient conditions for the successful recovery of the architecture
of U∗ in terms of a signal to noise like quantity – to that end, we introduce the following
definitions.

Definition 5 (RFD Noise) We define the RFD Noise level η≤t,vM∗
for an H2 RFD optimiza-

tion problem (29) to be

η≤t,vM∗
:=

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
. (48)
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The control theoretic interpretation (26) of the linear model (25) used in inference prob-
lems motivates our terminology – recall in particular that in (26) the state component of
the closed loop response W is interpreted as measurement noise in the context of identifying
a structured controller. Likewise, T≤t,v can be viewed as additional noise introduced into
the architecture identification procedure by the temporal truncation procedure described in
(27). We proceed to define a control theoretic analog to the signal in the context of RFD
optimization problems.

Definition 6 (RFD SNR) In the context of architecture recovery via RFD, the magnitude
of each atom, ‖(U≤v∗ )A‖H2 plays the role of a signal, and the RFD Noise level η≤t,vM∗

that of
noise, leading to the definition of the SNR of a component (U≤v∗ )A, A ∈M∗ as

SNR
(
(U≤v∗ )A

)
:=
‖(U≤v∗ )A‖H2

η≤t,vM∗

. (49)

These definitions allow us to state simple conditions in terms of the SNR (49) for the
successful recovery of an actuation architecture via the solution to the H2 RFD optimization
problem (29).

Theorem 2 Let ρ = 0, λ = λ′ + κ, where λ′ is given by the right hand side of (40), and
κ > 0 is an arbitrarily small constant, and assume that β≤t,v/γ≤t,v < 1. If

SNR
(
(U≤v∗ )A

)
>

1

γ≤t,v − β≤t,v (50)

for all A ∈ M∗, then for sufficiently small κ, the solution Ũ to the H2 RFD optimization
problem (29) has the same row support as U≤v∗ .

Proof: Follows from rearranging terms in (41), Definition 6 and letting κ tend to 0 from
above.

Setting ρ = 0 increases the range Λ, as defined in (42), for which the RFD optimization
problem is successful in recovering the structure of U∗, and the assumption that β≤t,v/γ≤t,v < 1
ensures that Assumption 1 holds. Thus Theorem 2 can be viewed as a slightly stronger, but
more interpretable, set of sufficient conditions for the success of the RFD procedure.

Notice in particular that the left hand side of condition (50), i.e., the SNR, is mainly a
function of the desired controller U≤v∗ and the closed loop performance W≤t that it achieves,
whereas the right hand side of (50) is mainly a function of the structure of the optimal
controller and L≤t,v. Thus we expect controllers with sparse and evenly distributed actuation,
i.e., controllers that minimize the SNR threshold (γ≤t,v − β≤t,v)−1, that act quickly and
aggressively to achieve a good closed loop norm, i.e., controllers that maximize the SNR
(49), to be recovered by the RFD procedure.
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Figure 7: A diagram of the Stable Unidirectional Chain System case study.
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Figure 8: Behavior of identifiability parameters γ≤t,v and β≤t,v.

7 Case Study

The following case study illustrates the concepts introduced in the previous section on a
concrete system that satisfies our sufficient conditions.

We consider a H2 RFD optimization with control cost ρu = .1, and the remaining gen-
eralized plant (2) state space parameters set as B2 = C1 = I10, A = 1

2
I10 + 1

2
Z10, and

B1 = 1.1(E11 + E55) + .7E99 + .1I10. This system is illustrated in Figure 7. This simple
example is chosen in order to allow a direct computation of various bounds and parameters,
and to easily interpret the propagation of inputs and disturbances.

We consider the task of recovering the optimal actuation schemes that use either 2 actu-
ators or 3 actuators. In particular, we take the desired controller Us, for s = 2 and s = 3, to
be

Us := argmin
U∈RH∞

‖Y − L(U)‖2
H2

+ .1‖U‖2
H2

s.t. U has at most s nonzero rows,
(51)

with open loop state response Y and map L as defined in Example 3. We solve this optimiza-
tion problem by enumerating all possible actuation schemes, and we find that the optimal
actuation scheme for s = 2 is given by actuators at nodes 1 and 5, and for s = 3 by actuators
at nodes 1, 5 and 9.

We emphasize that the goal of this case study is to illustrate the concepts introduced in
the previous section, and to help the reader understand how the various parameters affect
the recovery conditions – in practice, M∗ and A∗ are not available. Further, we note that
the case study presented is, as far as we are aware, the first example in the literature of a
system for which convex optimization provably identifies an optimal actuation architecture.

With these optimal actuation schemes at our disposal, we vary the parameters t and
v to investigate how our recovery conditions are affected. As per the discussion in §6.3,
we set ρ = 0. We also show that for appropriate fixed controller order v and horizon t,
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increasing λ shifts the identified architecture from actuators at nodes 1, 5 and 9 to actuators
at nodes 1 and 5. This is a very desirable property from an architecture design perspective,
as it suggests that increasing the regularization weight λ causes the identified architecture
to move to a simpler, but still optimal, actuator configuration. As predicted by Corollary
1, each optimal architecture is identified for a range of regularization weights λ. Further, as
predicted by Theorem 2, the identified architectures are those for which the optimal control
law achieves a small closed loop norm.

We begin by examining how the lower bound parameter γ≤t,v and the maximum gain
β≤t,v are affected as we vary the horizon t and the controller order v. In particular, for
actuation sparsity s = 2, we compute γ≤t,v and β≤t,v for (i) t = 6 and v ∈ {1, 2, 3} (shown
in Figure 8a), (ii) for v = 1 and t ∈ {1, 2, 3, 4} (shown in Figure 8b), and (iii) for v = 2
and t ∈ {2, 3, 4} (shown in Figure 8c). As expected, there is a decrease in the lower bound
parameter γ≤t,v and an increase in the maximum gain β≤t,v as v increases, while both γ≤t,v
and β≤t,v are non-decreasing for a fixed controller order v and increasing horizon t as long
as t ≤ τM∗ . For this problem, the mixing time τM∗ = 5. Further we see that γ≤t,v begins to
decrease for horizons t > 6 when v = 2.

t 1
γ≤t,v−β≤t,v SNR1 SNR5 λ ‖∆‖?act Bound

2 1 1.27 1.27 .8 .73 .89
3 .8 .87 .88 1.46 .91 1.03
4 .727 .732 .735 2.01 1.00 1.12
5 .7 .67 .68 2.45 1.05 1.16

Table 3: Summary of relevant values for the controller U2 with actuators at nodes 1 and 5.

The conditions of Theorem 2 are satisfied for v = 1 and several values of t. For example,
if we select t = 4, v = 1, ρ = 0 and U∗ as defined in (51), we can compute (γ≤4,1−β≤4,1)−1 =
.7273, SNR

(
(U≤1
∗ )1

)
= .7324, and SNR

(
(U≤1
∗ )5

)
= .7353, thus satisfying condition (50) for

each of the two actuators. Further, selecting λ = 2.0119 ∈ Λ, and using this value for λ in
the truncated RFD optimization (29) recovers a solution with non-zero first and fifth rows.

Perhaps surprisingly, similar positive recovery results can be verified for all 2 ≤ t ≤ τM∗
– the relevant values are summarized in Table 3. In this table, SNRi corresponds to the
SNR achieved by the controller component corresponding to the actuator at node i. Further,
∆ := Û − U≤v∗ is the approximation error between the architect parameter Û and underlying
parameter U≤v∗ , and the values in the “Bound” column are given by equation (52) in the
appendix giving upper bounds on ‖∆‖?act. It is worth noting that for t = 5, we do not
satisfy the sufficient conditions of Theorem 2, but nonetheless recover the correct actuation
architecture.

We now consider the case of actuation sparsity s = 3. Much as in the s = 2 case, we
can verify that the conditions of Theorem 2 hold for v = 1, and 2 ≤ t ≤ τM∗ , where the
mixing time τM∗ is still 5. However, since the controller with 3 actuators is able to achieve
a much better closed loop norm, the SNRs are significantly larger, while the SNR threshold
(γ≤t,v − β≤t,v)−1 does not change significantly. In particular, for the case of t = 5, we have a
threshold of (γ≤5,1 − β≤5,1)−1 = .82, and SNRs of 4.04, 4.04 and 2.67 for the three actuator
components.

This is consistent with our original interpretation of the closed loop state response W≤t
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playing the role of measurement noise – the better the performance of the controller, the
easier it is to identify via RFD. These experiments demonstrate that controllers with sparse
and diffuse actuation schemes that achieve a small state response W≤t are easy to identify
as the solutions to RFD optimization problems. In summary, our analysis and case studies
demonstrate that: (i) the parameter ρ can be set to 0 in the RFD optimization problem (7),
even if the original model matching problem (6) had non-zero control cost ρu; (ii) choosing
small controller order v and horizon t can actually lead to a favorable threshold (γ≤t,v −
β≤t,v)−1 (50); (iii) actuation schemes that are more evenly distributed (so that they lead to
large mixing times τM∗ in (35)) are easier to identify; and (iv) controller components that
maximize the RFD analog of a SNR (49) are more likely to satisfy our recovery conditions.
These consist of controllers that have a concentration of energy in their early impulse response
elements, and that achieve a closed loop with small state response component.

8 Future Work
A priori bounds on incoherence: It is of great interest to derive a priori bounds on
the gain parameters α≤t,v (33) and β≤t,v (34) in terms of the state-space parameters of the
system and a lower bound on the mixing time τM∗ (35). This would allow for broader classes
of systems to be classified as being amenable to RFD. We are currently pursuing semidefinite
relaxation based methods to obtain bounds on these parameters [39].
Scalability: The scalability of the RFD framework is limited by the underlying quadratic
invariance based controller synthesis algorithms upon which it is built. In order to allow
the RFD framework, and distributed optimal control theory in general, to scale to large
heterogeneous systems, the first author and co-authors have developed the localized optimal
control framework (cf. [40] and references therein). The algorithmic component of the RFD
framework has already been ported [41]; it is of interest to see if analogous recovery conditions
can also be developed.
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A Proof of Theorem 1

Proof: The proof of Theorem 1 centers around showing that under Assumption 1, the
unique solution to the architect optimization (30) is also the unique solution of the original
unconstrained optimization (29). We emphasize that at no point during the RFD process
do we assume knowledge of A∗ or of the architect optimization problem (30).

The proof consists of two parts: we first show that if α≤t,v > 0, the architect optimization
problem (30) has a unique optimal solution Û , and control its deviation from the underlying
desired controller U≤v∗ . We then use Û and its error bound to construct a strictly dual-
feasible primal/dual pair for the original RFD optimization problem (29), showing that Û is
indeed its unique optimal solution as well.

Proposition 1 (Bounded Errors) Fix a horizon 1 ≤ t < ∞, and a controller order 1 ≤
v ≤ t. Assume that α≤t,v as defined in (33) is strictly positive, and let ∆ := Û −U≤v∗ . Then

‖∆‖?act ≤ 1
α

(
λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+ ρ

∥∥U≤v∗
∥∥?

act

)
. (52)
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Proof: It is clear that under the assumption that α≤t,v > 0, the architect optimization
problem (30) is strongly convex, and hence has a unique optimal solution Û . Letting ∆ :=
Û −U≤v∗ , and using the relation (27), the optimality conditions of the architect optimization
problem (30) are then given by

([
L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)−

[
L≤t,vA∗

]†
(W≤t + T≤t,v) + ρU≤v∗ + λZ + ΛA⊥∗ 3 0,

where Z ∈ ∂
∥∥∥Û
∥∥∥
act

satisfies ‖ZA∗‖?act = 1,
∥∥ZA⊥∗

∥∥?
act ≤ 1, and ΛA⊥∗ ∈ A⊥∗ is the Lagrange

multiplier corresponding to the architect constraint U ∈ A∗. Projecting (A) onto A∗, and
leveraging that ∆ ∈ A∗, we then obtain
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆) =

([
L≤t,vA∗

]†
(W≤t + T≤t,v)− ρU≤v∗ − λZA∗

)
. (53)

We then have the following chain of inequalities

α≤t,v ‖∆‖?act ≤
∥∥∥∥
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)

∥∥∥∥
?

act
≤ λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
+ ρ

∥∥U≤v∗
∥∥?
act

where the first inequality follows from (33), and the second from (53) and the triangle
inequality. Rearranging terms yields the error bound (52).

Strict dual feasibility

In order to construct a primal/dual feasible pair for optimization (29) from Û , we first set
ZA∗ to be a member of the sub differential ∂ ‖·‖act evaluated at Û . We now choose ZA⊥∗ to
be

ZA⊥∗ :=

([
L≤t,v

A⊥∗

]†
(W≤t+T≤t,v)−

[
L≤t,v

A⊥∗

]†
L≤t,v
A∗ (∆)

)
λ

(54)

In doing so, we guarantee that (Û , Z) satisfy the optimality conditions of optimization
(29). What remains to be shown is the ZA⊥∗ is an element of the sub-differential. In order to
do so, we show that under the assumptions of the theorem,

∥∥ZA⊥∗
∥∥?
act < 1. This guarantees

that Z is indeed in ∂
∥∥∥Û
∥∥∥
act

, and that ÛA = 0 for all A /∈M∗.

To that end, notice that
∥∥ZA⊥∗

∥∥?
act can be upper bounded by

(∥∥∥∥∥
[
L≤t,v

A⊥∗

]†
L≤t,v
A∗ (∆)

∥∥∥∥∥
?

act

+

∥∥∥∥∥
[
L≤t,v

A⊥∗

]†
(W≤t+T≤t,v)

∥∥∥∥∥
?

act

)
λ

≤ 1
λ

(
β≤t,v ‖∆‖?act +

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

)

≤ 1
λ
δ

(
ρ
∥∥U≤v∗

∥∥?
act +

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

)

+δ + 1
λ

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act
< 1,
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where the first inequality follows from applying the triangle inequality to (54), the second
from applying definition (34), the third from applying the error bound (52), and the fourth
from (40). Thus we have shown that under the assumptions of the Theorem, Û is also the
optimal solution of the original problem (29) – its uniqueness follows from the local strong
convexity of the cost function around Û . Finally, if for A ∈ M∗, we have that (41) holds,
then ÛA 6= 0.

Proof: [Proof of Lemma 2] The gain α≤t,v is bounded below by

min
‖∆‖?act = 1

∆ ∈ A∗

max
A∈M∗

‖
([

L≤t,vA

]†
L≤t,vA + ρI

)
∆A‖H2 −

∑

B6=A∈M∗

‖
[
L≤t,vA

]†
L≤t,vB ∆B‖H2

≥ ρ+ min
B⊆M∗,|B|≥1

max
A∈B

σmin

([
L≤t,vA

]†
L≤t,vA

)
−

∑

B6=A∈B

σmax

([
L≤t,vA

]†
L≤t,vB

)
,

where the inequalities follow from the fact that ‖∆‖?act = 1 implies that there exists A ∈M∗
such that ‖∆A‖H2 = 1, and the definition of the respective norms. The derivation of the
bound on β≤t,v is similar, and hence omitted.
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