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Abstract— In recent work the system level synthesis (SLS)
paradigm has been shown to provide a truly scalable method
for synthesizing distributed feedback controllers. Moreover,
the resulting synthesis problem is convex. In this paper we
provide minimal state space realizations for both the state
and output feedback controllers. It is also shown that (for
fixed n) the state dimension of the controllers grows linearly
with FIR filter horizon length – in both cases, we show that
if the underlying transfer matrices are structured, so is the
corresponding state-space realization. For the H2 state feedback
case a simple decomposition technique reduces the synthesis
problem to solving a set of lower dimensional LQR problems
that can be solved in parallel.

I. PRELIMINARIES & NOTATION

We use standard definitions of the Hardy spaces H2 and
H∞ and denote their restriction to the set of real-rational
proper transfer matrices by RH2 and RH∞ respectively. For
a detailed desription of these spaces the reader is referred to
[1]. Let Gi denote the ith spectral component of a transfer
function G, i.e., G(z) =

∑∞
i=0

1
ziGi for |z| > 1. Finally,

we use FT to denote the space of finite impulse response
(FIR) transfer matrices with horizon T , i.e., FT := {G ∈
RH∞ |G =

∑T
i=0

1
ziGi}.

We will make frequent use of the following system oper-
ations in this paper. Consider the proper MIMO systems

Gi =

[
Ai Bi

Ci Di

]
, i ∈ {1, 2}

whose inverses are given by

G−1i =

[
Ai −BiD

†
iCi −BiD

†
i

D†iCi D†i

]
where D†i denotes the right inverse of Di (which is assumed
to have full row rank). Note that if the system is strictly
proper, then there is no state space formula for the inverse.
The cascade connection of two systems such that y =
G1G2u has a realization

G1G2 =

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 ,

and a parallel negative connection giving y = (G1 −G2)u
has the realization

G1 −G2 =

 A1 0 B1

0 A2 B2

C1 −C2 D1 −D2

 .
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Fig. 1: Controller and plant interconnection for the control synthesis
problem. The LFT F (P,K) is the closed loop map from w to z̄.

II. INTRODUCTION

A. Distributed Control

Consider the discrete, linear time invariant (LTI) system
with state dimension n, nu inputs, and no outputs:

x[k + 1] = Ax[k] + B1w[k] + B2u[k] (1a)
z̄[k] = C1x[k] + D11w[k] + D12u[k] (1b)
y[k] = C2x[k] + D21w[k] + D22u[k] (1c)

which we compactly write as

P =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =

[
P11 P12

P21 P22

]
.

In the frequency (z) domain the subsystems take the form
Pij = Ci(zI −A)−1Bj + Dij .

Distributed control in the classical setting seeks to con-
struct a controller K that solves

minimize ‖F (P,K)‖
subject to K internally stabilizes P (2)

K ∈ C

where ‖ · ‖ is an appropriate system norm, C is a subspace,
and

F (P,K) , P11 + P12K(I −P22K)−1P21

is the lower linear fractional transformation (LFT) of P and
K. The interconnection of plant and controller is shown
in Figure 1. The subspace constraint K ∈ C renders the
distributed control problem non-convex in general. However,
one of the centrepieces of decentralized control theory intro-
duces the concept quadratic invariance (QI) which charac-
terizes when (2) can be solved using convex programming
[2].

The identification of QI as a useful condition for determin-
ing the tractability of a distributed optimal control problem
led to an explosion of synthesis results in this area [3]–[11].
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Fig. 2: Block diagram of the closed loop map that includes the plant state
space matrices from (1). The key difference between the SLS formulation
and the traditional approach is that the focus here is on the mapping from
(δx, δy) to x,u rather than w to z̄.

These results showed that the robust and optimal control
methods that proved so powerful for centralized systems
could be ported to distributed settings. However, they also
made clear that the synthesis and implementation of QI dis-
tributed optimal controllers did not scale gracefully with the
size of the underlying cyber physical system. In particular,
a QI distributed optimal controller is at least as expensive to
compute as its centralized counterpart (c.f., the solutions pre-
sented in [3]–[11]), and can be more difficult to implement
(c.f., the message passing implementation suggested in [11]).
This limited scalability is what motivated the development
of the System Level Synthesis (SLS) framework, which we
briefly recall in the next subsection.

B. System Level Synthesis

System level synthesis (SLS) problems [12] define the
broadest class of distributed, constrained optimal control
problems that can be solved using convex optimization. The
framework has been developed over the last few years to
cover state feedback with delays [13], localized LQR and
LQG control [14], [15], as well as filtering [16] and robust-
ness [17]. The framework allows one to naturally handle
communication and computational delay, sparsity, and local-
ity constraints. Moreover, SLS problems have been shown to
scale gracefully with system complexity, in particular, they
enjoy O(1) synthesis and implementation complexity relative
to the dimension of the plant. For computational aspects of
the SLS framework see [18].

For an LTI system with dynamics given by (1), we define
the system response {R,M,N,L} to be the maps satisfying[

x
u

]
=

[
R N
M L

] [
δx
δy

]
, (3)

where δx = B1w is the disturbance on the state vector, and
δy = D21w is the disturbance on the measurement. The
closed loop map is shown in Figure 2 with the plant state
space matrices included.

We say that a system response {R,M,N,L} is stable
and achievable with respect to a plant P if there exists an

internally stabilizing controller K such that the interconnec-
tion F (P,K) is consistent with (3). We make the following
standard assumptions throughout this paper:

Assumption 1: The interconnection F (P,K) is well
posed, i.e. the matrix (I −D22Dk) is invertible.

Assumption 2: Both the plant and the controller real-
izations are stabilizable and detectable; i.e., (A,B2) and
(Ak, Bk) are stabilizable, and (A,C2) and (Ak, Ck) are
detectable.

The following theorem characteizes all possible system
responses a stabilizing controller can achieve.

Theorem 1 ( [12]): For the output feedback problem with
D22 = 0 in (1) the system response {R,M,N,L} transfer
matrices from (3) are:

R = (zI −A−B2KC2)−1

M = KC2R

N = RB2K

L = K + KC2RB2K. (4)

and the following are true:
(a) The affine subspace described by:[

zI −A −B2

] [R N
M L

]
=
[
I 0

]
(5a)[

R N
M L

] [
zI −A
−C2

]
=

[
I
0

]
(5b)

R,M,N ∈ 1

z
RH∞, L ∈ RH∞ (5c)

parameterizes all system responses (4) achievable by an
internally stabilizing controller K.

(b) For any transfer matrices {R,M,N,L} satisfying (5),
the controller K = L−MR−1N is internally stabilizing
and achieves the desired response (4).

In [12], one implementation of the controller from the system
response matrices {R,M,N,L} is given by

β = (I − zR)β −Ny (6)
u = Mβ + Ly

where β is the controller’s internal state. The similarities
between this and the standard state space controllers defined
by the matrices (AK , BK , CK , DK) given by

xK [k + 1] = AKxK [k] + BKy[k] (7)
u[k] = CKxK [k] + DKy[k]

are clear. The main difference however is that the controller
matrices in the system level synthesis framework are dy-
namic, i.e. they contain transfer matrices. The contribution
of this paper is to provide a classical realization (7) of the
SLS controller (6).

III. STATE SPACE REALIZATIONS

In this section the main results of the paper are presented
– structured state space realizations of the state and output
feedback controllers as well as the dimension of the resulting
controllers.



A. State Feedback

In the state feedback setting we consider the open-loop
system

P =

 A B1 B2

C1 D11 D12

I 0 0


and would like to design a dynamic controller u = Ky. In
this context, the system response matrices {R,M} reduce
to

R = (zI −A−B2K)−1, (8a)

M = K(zI −A−B2K)−1, (8b)

and Theorem 1 reduces to the following corollary:
Corollary 1: For the state feedback system P, the follow-

ing are true:
(a) The affine subspace defined by[

zI −A −B2

] [R
M

]
= I (9a)

R,M ∈ 1

z
RH∞ (9b)

parameterizes all system responses from δx to (x,u),
as defined in (8), achievable by an internally stabilizing
state feedback controller K.

(b) For any transfer matrices {R,M} satisfying (9), the
controller K = MR−1 is internally stabilizing and
achieves the desired system response (8).

Our first result is to provide a state space realization of the
state feedback controller K = MR−1 when the system
response {R,M} are FIR transfer matrices of horizon T ,
i.e., R,M ∈ FT .

Define by Z the down shift operator which is a square
matrix with zeros everywhere apart from on the sub-diagonal
which contains identity matrices of dimension n × n. Next
let I denote the matrix[

In 0n . . . 0n
]T

where there zero block is repeated T − 1 times.
Theorem 2: A minimal state space realization for the state

feedback controller u = Ky = MR−1x with FIR horizon
length T , is given by

K =

[
Z − IR̂ −I

M1R̂− M̂ M1

]
,

where

R̂ =
[
R2, . . . , RT

]
and M̂ =

[
M2, . . . ,MT

]
are the spectral elements of R and M respectively.

Proof: The full proof of the state feedback controller
is ommitted as it follows as a special case of the output
feedback controller presented in the next section. For com-
pleteness, we include here the realizations for zM and zR:

The FIR filter zM with horizon T is described by

zM =

T−1∑
k=1

(
z−kMk+1

)
+ M1 + zM0.

As M is strictly proper we have that M0 = 0, and a state
space realization for zM is

zM =

[
Z I
M̂ M1

]
.

As a consequence of constraint (9a), for R we have that
R1 = I , thus we have the realization

zR =

[
Z I
R̂ I

]
.

Note that the resulting controller has a state dimension that
is linear in the horizon length of the FIR filter.

Corollary 2: Let the the state x in (1) have dimension n
and the system response {R,M} be FIR with horizon length
T . Then the state dimension of K is (T − 1)n.

B. Output Feedback
The output feedback controller takes the form K = L −

MR−1N with M,R,N strictly proper, and the transfer
matrix L only required to be a proper. As in the state-
feedback case, we assume that all transfer matrices of the
system response are FIR with horizon T , i.e., R,M,N,L ∈
FT The following state space realizations are used

L =

[
Z I
L̂ L0

]
, M =

[
Z I
M̃ 0

]
with L̂ =

[
L1, . . . , LT

]
, M̃ =

[
M1, . . . ,MT

]
and

zN =

[
Z I
N̂ N1

]
, N̂ =

[
N2, . . . , NT

]
.

Theorem 3: A minimal state space realization for the
output feedback controller u = Ky = (L −MR−1N)y
with horizon length T is given by

K =

 Z − IR̂ IN̂ IN1

0 Z I
M̃ L̂ L0

 .

Proof: Expand out L−M(zR)−1(zN) as[
Z I
L̂ L0

]
−
[

Z I
M̃ 0

][
Z − IR̃ −I

R̂ I

] [
Z I
N̂ 0

]

=

[
Z I
L̂ L0

]
−

 Z IR̂ I
0 Z − IR̂ −I
M̃ 0 0

[ Z I
N̂ N1

]
,

apply the similarity transformation using

T =

[
I I
0 I

]
to the middle term and extract the minimal realization to get[

Z I
L̂ L0

]
−

[
Z − IR̂ I
−M̃ 0

] [
Z I
N̂ N1

]

=


Z 0 0 I
0 Z − IR̂ IN̂ IN1

0 0 Z I
L̂ M̃ 0 L0

 ,



finally applying a second similarity transformation with

T =

I 0 −I
0 I 0
0 0 I

 ,

gives 
Z 0 0 0

0 Z − IR̂ IN̂ IN1

0 0 Z I
L̂ M̃ 0 L̂


which leads to the minimal realization Z − IR̂ IN̂ IN1

0 Z I
M̃ L̂ L0

 .

Corollary 3: Let the the state x in (1) have dimension n
and the system response {R,M,N,L} be FIR with horizon
length T . Then the state dimension of the output feedback
controller, K, is 2(T − 1)n.

IV. H2 STATE FEEDBACK

A. Controller Structure

Consider the dynamical system (1a) with w[k] ≡ 0
and assume it has been constructed from a network of m
subsystems, where each sub system evolves according to

xi[k+1] = Aiixi[k]+
∑
j∈Ni

Aijxj [k]+Biiui[k], i = 1, . . . ,m,

and all matrices and vectors are assumed to be of compatible
dimensions. The system can then be compactly written as

x[k + 1] = Ax[k] + Bu[k]

where x and u are the concatenated vectors containing the
local states and control inputs. If there is no actuation at
subsystem i then Bii is a zero block. Note that in this
simplified setting there is no coupling between the inputs
hence B is a block diagonal matrix. In future work we will
relax this assumption. We now consider the SLS formulation
of the H2 state feedback problem:

minimize
{R,M}

∥∥∥∥ [C1 D12]

[
R
M

]∥∥∥∥2
H2

(10)

s.t. (9a), (9a), {R,M} ∈ Sx × Su
where the sets Sx and Su encode information sharing con-
straints on the closed loop system. Here we focus on the
case where S? := L? ∩ FT? ∩ X? with L defining a set of
subspace (sparsity) constraints, FT the FIR constraint, and X
defining any other relevant convex set.1 Define the standard
performance weights Q = CT

1 C1 and R = DT
12D12 and

assume that Q � 0, R � 0 and define the cost functional

J †(M [k]) :=

T−1∑
k=1

Tr
(
R[k]TQR[k] + M [k]TRM [k]

)
,

1We use the subscript ? as shorthand to indicate both sets Sx and Su.

then (10) can be written in terms of its spectral components:

min.
{R[k],M [k]}Tk=1

J †(R[k],M [k]) + Tr(R[T ]TQTR[T ])

s.t. R[k + 1] = AR[k] + BU [k], k = 1, . . . , T

R[1] = I (11)
R[k] ∈ Sx[k], M [k] ∈ Su[k]

Note that the set Sx[k] encodes constraints on the kth

spectral element and enforce locality constraints and the
FIR constraint via R[k + 1] = 0. In [14] localized LQR,
LLQR, was introduced as a method for solving (10) and
equivalently (11) in a decomposable manner. The idea is to
take advantage of the fact that we have column separability
in the objective function and the constraints. Let xj [k] denote
the jth column of R[k] and uj [k] the jth column of M [k],
then instead of solving the full problem (11) we can solve
n problems of the form

minimize
{xj [k],uj [k]}Tk=1

Jj(uj [k]) + xT
j [T ]QTxj [T ]

s.t. xj [k + 1] = Axj [k] + Buj [k], k = 1, . . . , T

xj [1] = ej

xj [k] ∈ Sjx[k], uj [k] ∈ Sju[k]

for j = 1, . . . , n, where we define the decomposed cost
functional

Jj(uj [k]) :=

T−1∑
k=1

xj [k]TQxj [k] + uj [k]TRuj [k], (12)

ej is the standard jth basis vector for Rn and the superscript
j on the sets S? denotes the jth column of the appropriate
sparsity constraint.

We now assume that the constraints S? enforce d-localized
constraints (see [14]), i.e., that the support of the state and
input constraints Sx and Su satisfy

supp(Sx) ⊆ supp(A)d−1, supp(Su) ⊆ supp(A)d. (13)

Equation (13) leads to a natural notion of boundary states and
control inputs, i.e., those states and control actions that when
constrained to be zero ensure that the d-localized constraint
as defined by the subspace S is satisfied. In particular, letting
A := supp(A), we define the boundary state and control
actions for the j-th subsystem as

Bxj := {xi |supp
(
Ad −Ad−1)

i
6= 0}, (14)

and

Buj := {ui |supp
(
Ad+1 −Ad

)
i
6= 0}, (15)

respectively. To ease notation going forward, we simply write
xBj and uBj to denote the boundary states and control actions
for the the j-th subystem, i.e.

xBj := {x | x ∈ Bxj }, uBj := {u | u ∈ Buj }.



This leads to the subproblems

minimize
{xj [k],uj [k]}Tk=1

Jj(uj [k]) + xT
j [T ]QTxj [T ] (16a)

s.t. xj [k + 1] = Axj [k] + Buj [k], k = 1, . . . , T

xj [1] = ej

xBj [k] = 0, k = 1, . . . , T (16b)

uBj [k] = 0, k = 1, . . . , T (16c)

for j = 1, . . . , n. The goal now is to write the problem above
in the form of a standard LQR problem. We will first take
care of constraint (16c). Define the reduced vector ũj [k] :=

u
(1:B)
j [k] where the superscript (1 : B) denotes the set of

elements of uj running from from the first to the boundary
element and ũBj is the last element of ũj . Similarly, let B̃
denote the matrix corresponding to the first B columns of B
and R̃ the first B rows and columns of R. Let J ′j take the
form of (12) but with the quadratic cost in uj replaced with
ũj [k]T R̃ũj [k]. The LQR problem (16) now reduces to

minimize
{xj [k],ũj [k]}Tk=1

J ′j (ũj [k]) + xj [T ]TQTxj [T ]

s.t. xj [k + 1] = Axj [k] + B̃ũj [k], k = 1, . . . , T

xj [1] = ej

xBj [k] = 0, k = 1, . . . , T

which is almost in standard form.
Assumption 3: The boundary elements xBj can be directly

controlled by the “actuators” on the boundary ũBj .
Next we remove the final non-standard constraint (16b).

Consider the dynamics of the boundary states which are
given by

xBj [k + 1] = AB
′
xj [k] + B̃B

′
ũBj [k].

Here, AB
′

refers to the row in A corresponding to boundary
state. Under the premise of assumption 3 the boundary
control can be chosen to cancel out the state dynamics by
selecting

ũBj = −AB
′
xj [k]

1

B̃B′
(17)

which by definition satisfies (16b). Finally we rewrite the
cost function to take into account the fact that the boundary
control law (17) can be expressed in terms of the state. The
quadratic control penalty can be decomposed into

ũT
j R̃ũj = ûT

j RûT
j + (uB1 )TRBuB1 ,

where the second quadratic term can be written in terms of
xj by substituting in the control action (17). The resulting
LQR problem is then

minimize
{x̂j [k],ûj [k]}Tk=1

Jj(ûj [k]) + x̂j [T ]TQT x̂j [k]

s.t. x̂j [k + 1] = Âx̂j [k] + B̃ûj [k], k = 1, . . . , T

x̂j [1] = ej (18)

with the cost function defined as

Jj(ûj [k]) =

T−1∑
k=1

x̂j [k]TQx̂j [k] + û[k]TRû[k],

where

Q := (Q + ΓT (AB
′
)TRAB

′
Γ), Γ :=

(
B̃B

′
)−1

,

and x̂j [k] := x
(1:B)
j [k]. Note now that the n problems defined

by (18) are in standard LQR form.

B. Solution Complexity

The dynamic programming solution to the finite-time LQR
problem gives an optimal control law defined by u?[k] =
Kkx[k] where the control gain at each time step is computed
from the following procedure [19, §4.1]:

1) Let PT := QT .
2) For k = T, . . . , 1 solve the Riccati recursion

Pk−1 = Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA.

3) For k = 0, . . . , T − 1 construct the controller gain

Kk := −(R + BTPk+1B)−1BTPk+1A.

The complexity of the solution is O(Tn3), this intuitively
makes sense as it requires solving T Riccati equations corre-
sponding to an n-state system. Define Nj to be the dimension
of x̂j for j = 1, . . . , n, then the complexity of constructing
the H2-state feedback controller via a dynamic programming
is O(nTN3

j ), however as the problem decomposes perfectly,
in practice one solves n dynamic programming problems (in
parallel) of O(TN3

j ) and in practice Nj � n.
For the infinite horizon LQR problem (T = ∞), the

optimal control strategy is not time-dependant and is given
by control policy

u?[k] = −(R + BTPB)−1BTPAx[k].

Translating this to the reduced order, decomposed, SLS
problem (18), it is easily seen that the complexity of the
controller synthesis problem requires solving n Ricatti equa-
tions (potentially in parallel) with a cost of O(N3

j ) for
j = 1, . . . , n.

V. CONCLUSIONS

Explicit state space realizations and dimensionality scal-
ings for state and output feedback controllers in the system
level synthesis framework have been derived. For the H2

state feedback case we showed that the controller could
be constructed by solving a series of reduced order LQR
problems. Future work will involve looking at the LQG
problem as well as removing the assumption of no input
coupling.
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