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Abstract— An algorithmic bridge is starting to be established
between sparse reconstruction theory and distributed control
theory. For example, `1-regularization has been suggested as an
appropriate means for co-designing sparse feedback gains and
consensus topologies subject to performance bounds. In recent
work, we showed that ideas from atomic norm minimization
could be used to simultaneously co-design a distributed optimal
controller and the communication delay structure on which it
is to be implemented. While promising and successful, these
results lack the same theoretical support that their sparse recon-
struction counterparts enjoy – as things stand, these methods
are at best viewed as principled heuristics. In this paper, we
describe theoretical connections between sparse reconstruction
and systems design by developing approximation bounds for
control co-design problems via convex optimization.

I. INTRODUCTION

As we move into the era of large scale systems, such as the
new smart grid, clean slate internet and automated highway
systems, the design of high performing controllers will
become more and more challenging. For example, distributed
controllers are characterized by the structure imposed on
them by information sharing constraints – this structure can
take the form of sparsity, in which each controller has access
to only a subset of local measurements, or of delay, in which
each controller eventually has access to all measurements,
but with a delay dictated by a communication network.

In general, such structured optimal control problems can
be very difficult (c.f. [1] for a canonical example) – however,
with the identification of Quadratic Invariance (QI) [2] as an
appropriate condition for the convexification of such prob-
lems, much progress has been made. We refer the reader to
[3], and the references therein, for a survey of recent results
in the area. Furthermore, even when the underlying problem
is not QI, progress has been made in designing structured
linear feedback controllers; representative examples include
sparsity inducing control [4], [5], convex relaxations of rank
constrained problems [6], [7], the minimization of convex
surrogates to traditional performance metrics [8], spatial
truncation [9], positive systems [10], [11], and localized
distributed control [12], [13], [14]. . For the purposes of
this paper, the salient feature of all of these results is that
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imposing and/or inducing structural constraints on the design
variable, i.e. the controller, can be done in a convex manner.

What is often taken for granted in these results (excep-
tions include [4], [5], [9]) is the existence of information
sharing constraints to begin with. Indeed, in many systems
engineering settings, there is the possibility of designing how
information is shared between controllers. For example, in
the delay constrained setting, if the speed of communication
between controllers is twice as fast as dynamics propagate
through the physical plant, then this suggests the possibility
of adding shortcuts between second neighbors. Designing
such information constraints, and searching for an “optimal”
topology, that is to say one that optimally trades off between
communication structure complexity and closed loop per-
formance, is in its full generality most likely an intractable
combinatorial problem.

An approach which has seen much success in similar prob-
lems in other fields has been to employ convex relaxations
in order to approximately recover such solutions. The idea
of using convex relaxations in optimization problems, in
particular in the setting of attempting to recover structured
solutions, has a rich and fruitful history in the machine
learning and statistics communities. In particular, it is often
known a priori that the solution to an optimization problem
should be structurally “simple.”

It has been shown that this simple structure can often be
approximately, and sometimes exactly, recovered by min-
imizing an appropriately chosen convex penalty function.
Well known examples include the `1-norm to induce sparse
solutions, and the nuclear norm to induce low-rank solutions
(e.g. [15], [16], [17]). In [18], this notion of “simplicity” was
formalized and generalized in terms of atomic norms. We
refer the interested reader to [19] for a review of the current
state of the art, both theoretically and computationally, of
using regularizers to induce structure in a statistical setting.

These developments have not gone unnoticed within the
control community, and indeed the natural connection be-
tween such sparse model selection ideas and system identi-
fication has been made. The use of atomic norms and regu-
larizers to identify systems of low Hankel order have been
particularly fruitful, c.f. [20], [21], [22], and similar ideas
have been suggested for linear regression based methods
[23]. However, one can argue that these system identification
problems are essentially model selection problems, but with
a specific type of structure, namely that of a linear time
invariant (LTI) system’s impulse response.

Representatives of the use of such ideas in the control
literature for the design of information sharing constraints
have only recently begun to emerge. These include the use



of `1-regularization to design sparse H2 optimal feedback
gains [5], sparse treatment therapies [24], sparse consensus
[25], [26] and synchronization [27] topologies , and the use
of a particular type of atomic norm to design communication
delay constraints that are well suited to H2 distributed opti-
mal control [28], [29]. One can make the argument that these
results form an algorithmic link between the results in sparse
reconstruction theory and co-design for optimal control. The
computational methods have been ported, with great success,
but these methods do not yet enjoy the same theoretical
support that their sparse reconstruction counterparts do.

The goal of this paper is to show that there is indeed
a way to make natural theoretical links between these two
areas. We will argue that identifying appropriately structured
estimators in a machine learning, system identification or
statistical context is in fact conceptually and mathematically
parallel to designing appropriately structured controllers in
an optimal control setting. By appropriately re-interpreting
the parameters and measures of success of these estimation
problems to be compatible with a design problem, we will
be able to leverage the results from the machine learning
community that give these methods their legitimacy. We
will focus in particular on the so-called group norm (and
its variant that allows overlap [30]), and repurpose existing
results from the sparse reconstruction literature [19] towards
our goals. In doing so, we will be able to provide sufficient
conditions under which the co-design of a controller and its
structure succeeds.

This paper is organized as follows: in Section II, we give
a brief overview of atomic norms, and give some examples
of how they can be used for design in control, focussing
in particular on the group norm. In Section III, we pause
to make an explicit theoretical link between identification
and design, and then with this link in mind, present a
stylized example, what we term “actuator regularization,” to
be used to illustrate the ideas that we will be presenting.
Continuing our focus on the group norm, in Section V,
we formally introduce group norm regularized optimizations,
and provide sufficient conditions for their success. We then
return to our stylized example in Section VI, and show via
a numerical study the usefulness of these techniques from
a design perspective. Finally, we end with conclusions and
directions for future work in Section VII. All proofs can be
found in the [31].

II. ATOMIC NORMS IN CONTROL

A. Atomic norms and structured solutions

As mentioned in the introduction, it is often known a
priori that the solution to an optimization problem should
be “simple,” and that this simple structure can be promoted
through the use of an appropriate convex penalty. This notion
of solutions with simple structure, in the context of linear
inverse problems, has been formalized and generalized in
terms of atomic norms [18].

In particular, if it is known that the true solution X∗ to a
set of linear equations y = AX+ν, for some bounded noise
term ||ν|| ≤ δ (we use ‖ · ‖ to denote the Euclidean norm),

should consist of a linear combination of a small number of
“atoms”, then it is shown that one should seek the solution
that minimizes an appropriately defined atomic norm, subject
to consistency constraints. Specifically, if one assumes that

X∗ =

r∑
i=1

ciai, ai ∈ A, ci ≥ 0

for A a set of appropriately scaled and centered atoms, and
r a small number relative to the ambient dimension, then
solving

minimizeX‖X‖A s.t. ‖y −AX‖2 ≤ δ2 (1)

with the atomic norm ‖ · ‖A given by the gauge function

||X||A : = inf{t ≥ 0 | X ∈ tconv(A)}
= inf{

∑
a∈A |ca| | X =

∑
a∈A caa}

(2)

results in solutions that both satisfy the consistency constraint
‖y−AX‖2 ≤ δ2, and are sparse at the atomic level (i.e. are
a linear combination of a small number of elements a ∈ A).

The geometric justification behind the success of these
methods is that the unit-ball of an atomic norm is appro-
priately “pointy” in high dimensions, and thus solutions are
likely to be at singularities (i.e. edges or corners) of the
norm-ball, inducing the desired simple structure.

B. Applications to distributed control

As distributed control problems are naturally characterized
by the structural constraints imposed on the controller, this
is a natural area to which regularization for co-design ideas
can be applied.

1) Static controllers: Arguably the simplest
controller/constraint co-design problem is one in which the
controller to be designed is a static feedback gain, and there
are no additional design constraints on the communication
structure beyond the desire for sparsity. Then the natural
atomic norm to use as a regularizer is the `1-norm – indeed
this is the approach that has been taken in [5]. Note that
similar ideas could be applied to the optimization problems
formulated for positive systems in [10] and [11].

Suppose now that we ask more from our design – not only
do we wish for a sparse feedback gain K, but we also require
that its sparsity pattern correspond to that of the adjacency
matrix of a strongly connected graph. It has been shown
that indeed the `1/`2-norm with overlap, or group norm
with overlap, promotes such a sparsity structure [30]. Thus,
through simple modification of the atomic norm used in the
regularizer, we can achieve more or less structure in our
controller, and additionally, we can fine tune this structure
to our design needs.

2) Dynamic controllers: More care must be taken when
designing regularizers for dynamic controllers, as now the
structure induced must be consistent both spatially and
temporally. As a representative example, we consider the task
of inducing structure that is consistent with how information
propagates across a communication graph – indeed it was
shown in [28], [29] that such a structure can be induced via
a carefully chosen atomic norm, allowing for the co-design of



delay patterns that are well suited to H2 distributed optimal
control subject to strongly connected communication graphs
[32].

C. Other applications

This idea is also applicable to co-design problems outside
the scope of distributed control. For example, a sparse
communication graph for consensus can be designed using
`1-regularization [25], [26]. In Section IV, we introduce a
novel control co-design task that falls outside of the realm
of any examples discussed – that of designing actuation
and sensing schemes (to be made precise later). As it is
a conceptually simple problem to formulate, and does not
require any of the technical machinery of distributed control
(such as QI), we will use it as a stylized example throughout
the remainder of the paper. However, we first pause to make
an explicit, and we argue natural, theoretical link between
sparse reconstruction and controller co-design.

III. DESIGN VS. IDENTIFICATION

Let y, ε ∈ Y , x ∈ X , with X , Y Hilbert spaces, and let
L : X → Y be a bounded linear operator from X to Y . We
consider a generic convex optimization problem

min
x∈X

C (y − L(x)) + λ‖x‖A (3)

where ‖ · ‖A is an appropriately chosen atomic norm, C is
a convex cost function, and λ is a regularization parameter.
We assume that there is an underlying desired solution x∗,
related to y via

y = L(x∗) + ε. (4)

In the following, we discuss how this optimization prob-
lem can be interpreted from both a sparse reconstruc-
tion/statistical perspective, and a controller and structure co-
design perspective.

A. A statistical interpretation

In a statistical setting, C is often taken to be a risk
or loss function, y and L are observations and measure-
ments, respectively, ε corresponds to measurement/estimation
noise/error, and x is an estimator to be designed that explains
the observed data y given the measurements L. Typically, the
regularizer ‖ · ‖A is chosen to leverage a priori knowledge
that the estimator x should be sparse at the atomic level.

The objective of this minimization is to use the observation
and measurement data (y,L) and the prior knowledge on
the structure of x to obtain an estimator that not only
explains the current data properly, but that also predicts
future observations given future measurements. In trying to
achieve this task, the often competing metrics of bias and
variance can be traded off against each other, and it is
not necessarily a requirement to recover the “true” atomic
support of x, so long as the designed estimator can be
interpreted, and is sufficiently predictive.

B. A control theoretic interpretation

In a control co-design setting, C is taken to be a perfor-
mance metric (such as the H2 or H∞ norms), y corresponds
to the open loop system, x the controller to be designed, and
L the mapping that takes the controller to its effect on the
closed loop system. In this case, ε = y−L(x) corresponds to
the closed loop system, and C(y−L(x)) = C(ε) the closed
loop performance of the system. In particular note that if the
state space parameters of the system are known, then y and
L can be computed. Typically the regularizer ‖·‖A is chosen
in accordance to design constraints and objectives.

The objective of this optimization is then to find a con-
troller that minimizes the closed loop norm of the system and
that has desirable structure. In particular, there is no notion of
prediction, bias or variance in this setting, and we argue that
recovering the atomic support (i.e. the information sharing
constraint) of the controller x is of paramount importance,
as this informs the structural design of the controller.

C. A natural synthesis

It is worth focusing on the “ε” term in both of the above
settings – in particular, we see a mathematical equivalence
between measurement noise in the statistical setting, and
the closed loop response of the system on the control theo-
retic side. Intuitively, this suggests that controllers achieving
smaller closed loop norms (i.e. those whose identification
is subject to less “measurement noise”) are easier to recover
than those achieving poorer closed loop performance. In what
follows, we will show that this intuition indeed holds true.

Further, although not the subject of this paper, the com-
patibility of these two problems within the same framework
suggests that there may be a natural synthesis of the fields
of statistics and control. Indeed if the analysis used on both
types of problems can be appropriately combined, this would
yield a unified and principled framework for analyzing joint
system identification, control, and adaptation schemes.

IV. A STYLIZED EXAMPLE

With the observations and questions of the previous
section in mind, we now introduce our stylized “actuator
regularization” problem.

A. H2 Preliminaries and Notation

In the following, if M is a subspace of an inner product
space, we denote the orthogonal projection onto M by PM.

Let D ={z ∈ C : |z| < 1} be the unit disc of
complex numbers, and let D̄ be its closure. A function
G : (C

⋃
{∞})\D̄ → Cp×q is in H2 if it can be expanded

as

G(z) =

∞∑
i=0

1

zi
Gi

where Gi ∈ Cp×q and
∑∞
i=0 Tr(GiG

∗
i ) <∞. Define the

conjugate of G by

G(z)∼ =

∞∑
i=0

ziG∗i
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Fig. 1: The generalized plant model of Section IV

H2 is a Hilbert space with inner product given by

< G,H > =
1

2π

∫ π

−π
Tr(G(ejθ)H(ejθ)∼)dθ

=

∞∑
i=0

Tr(GiH
∗
i ),

where the last equality follows from Parseval’s identity.

B. H2 optimal control

Let P be a stable discrete-time plant given by

P =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
P11 P12

P21 P22

]
(5)

with inputs of dimension p1, p2 and outputs of dimension
q1, q2. The control input u ∈ Rp2 , disturbance w ∈ Rp1 ,
measured output y ∈ Rq2 and controlled output z ∈ Rq1 are
related via the diagram in Figure 1, where each Pij is given
by

Pij = Ci(zI −A)−1Bj +Dij . (6)

In this example we our restrict attention to stable plants,
and look to design a controller K so as to minimize the
closed loop H2 norm of the system:

minimize
K

||P11 + P12K(I − P22K)−1P21||H2

s.t.K(I − P22K)−1 ∈ H2

(7)

where the constraint is sufficient (under mild technical as-
sumptions) to ensure internal stability of the system.

As is standard, we now pass to the Youla parameterization
to rewrite (7) as

minimize
Q

||P11 + P12QP21||H2
.

s.t. Q ∈ H2

(8)

C. Actuator Regularization

Suppose for simplicity that B2 is a diagonal matrix with
non-zero elements along its diagonal – in this case, by
constraining a row of K, or equivalently a row of Q, to be
zero, we are effectively removing the corresponding actuator
from the system’s design. Note that under dual assumptions,
constraining a column would correspond to removing a
sensor from the system’s design.

Remark 1: This problem could also be interpreted as an
actuator/sensor placement problem for a distributed system
under supervisory control.

Rather than constraining rows to be zero, we will look to
“regularize actuators” through the use of the group-norm. In
particular, let the atomic set be given by

A := {Qa ∈ H2 |Qat = ea(vat )>,∀t ≥ 0, ‖Qa‖H2 = 1},
(9)

i.e. those stable transfer functions with a single non-zero row,
normalized to have unit H2 norm.

For Q ∈ Hp2×q22 , this induces the atomic-norm

‖Q‖A =

q2∑
a=1

‖(ea)>Q‖H2
, (10)

and thus induces sparsity at the actuator level. We can then
write a regularized variant of (8) as

minimize
Q

||P11 + P12QP21||2H2
+ λ‖Q‖A

s.t. Q ∈ H2

(11)

where λ ≥ 0 is now a regularization parameter.
Remark 2: Through appropriate modifications, simultane-

ous actuator/sensor co-design could be done via an analogous
group atomic norm built from the columns and rows – care
needs to be taken in constructing such a regularizer however,
due to the overlap between atoms. In the next section we
show how this can be accommodated through the group norm
with overlap [30].

Unfortunately, as stated, this problem is infinite dimen-
sional, and there are no elegant ways of reducing this
regularized problem to a finite dimensional one. Thus in
order to perform the computation, we fix a time horizon T ,
and a controller order N , and approximate (11) with

minimize
Q

∑T
t=0 ||yt −Gt(Q)||22 + λ

(∑q2
a=1 ‖(ea)>Q‖F

)
s.t. Q =

[
Q0 Q1 . . . QN

]
(12)

with
Gt(Q) =

∑
j,k,l≥0
j+k+l=t

HjQkJl (13)

where y0 = 0, H0 = D12, J0 = D21, and yt = C1A
t−1B1,

Ht = C1A
t−1B2, Jt = C2A

t−1B1 ∀t ≥ 1.
We can write this in an even more concise form by defining

the stacked vector YT = (yt)
T
t=0 and the linear operator

LT (Q) = (Gt(Q))Tt=0, allowing us to reduce the problem
to one of the same form as (3)

minimize
Q

||YT − LT (Q)||2F + λ
(∑q2

a=1 ‖(ea)>Q‖F
)

s.t. Q =
[
Q0 Q1 . . . QN

]
(14)

Thus we see an explicit example of the control theoretic
interpretation given to (3) in Section III – indeed YT cor-
responds to a stacked vector of the open loop response,
LT maps the effect of the controller Q to the closed loop
impulse response, and letting ε(Q) := YT −LT (Q), we have
that ‖ε(Q)‖F is the finite horizon H2 cost of the system
using controller Q. The question now becomes, how can we
measure the success of the optimization (14)?



As will be shown, the atomic norm considered in this
section is a special case of the group norm. The next
section defines different measures of approximation quality
for a group norm regularized optimization, and provides
sufficient conditions for the optimization to yield such an
approximation.

V. THE GROUP NORM

A. Preliminaries

Consider a set of groups G, with |G| = G, where each
group g ∈ G can be identified with a subspace Sg ⊂ Rm×p,
with cardSg = dimSg = |g|. Define the group embedding
operator Eg : R|g| → Sg as the operator that appropriately
embeds a vector vg ∈ R|g| such that Eg(vg) ∈ Sg . Its
adjoint operator E+

g , as defined with respect to the trace
inner-product on Rm×p, is then the operator that extracts
the values of a vector x ∈ Rm×p that lie in Sg and then
appropriately maps them to vg ∈ R|g|.

With these definitions in mind, let v = (vg)g∈G ∈ Rq ,
with q =

∑
g∈G |g|, and define the group addition operator

AG : Rq → Rm×p as

AG(v) :=
∑
g∈G
Eg(vg). (15)

It is then immediate that its adjoint, once again with
respect to the trace inner-product, is then given by

A+
G (x) =

(
E+
g (x)

)
g∈G (16)

Example 1: Let m = p = 2, G = 2, and suppose that
q = 4 with

g1 =

[
∗ 0
∗ 0

]
, g2 =

[
0 0
∗ ∗

]
(17)

where ∗ denote place holders for arbitrary real numbers.
Let v1 = [1, 2]> and v2 = [±2, 3]>. Then v =

[1, 2,±2, 3]> and

AG(v) =

[
1 0
2 0

]
+

[
0 0
±2 3

]
=

[
1 0

2± 2 3

]
, (18)

and
A+
GAG(v) =

[
1 2± 2 2± 2 3

]>
. (19)

This also illustrates the complications that can arise from
allowing overlap between groups – in particular that there
can be constructive (2 + 2 = 4) or destructive (2 − 2 = 0)
interference between them.

We define the group norm, with respect to a set of groups
G, of a vector v = (vg)g∈G ∈ Rq as

‖v‖G :=
∑
g∈G
‖vg‖ (20)

where ‖ ·‖ denotes the Euclidean norm of a vector. The dual
norm, which we denote by ‖ · ‖G,∞, is then given by

‖v‖G,∞ := sup
g∈G
‖vg‖ (21)

B. Problem Formulation

We consider the task of approximating a vector v∗ satis-
fying

y = L ◦ AG(v∗) + ε, (22)

where we assume that v∗ = (v∗g)g∈G∗ , G∗ ⊂ G, is sparse
at the group level, via the optimal solution v̂ of the convex
program

minimizev 1
2‖y − L ◦ AG(v)‖2F + λ‖v‖G . (23)

Beyond the traditional measure of approximation error
‖v̂ − v∗‖G,∞, which we will be able to control, we also
consider three increasingly demanding measures of accuracy:

Definition 1: A vector v̂ is AG-support accurate with
respect to v∗ if supp (AG(v̂)) ⊆ supp (AG(v∗)).

Definition 2: A vector v̂ is G-support accurate with re-
spect to v∗ if gsupp (v̂) = G∗, where gsupp (v) := {g ∈ G :
‖vg‖ > 0}, that is to say the group support of v.

Additionally, in the following, we will overload notation
and also use G∗ to refer to the subspace spanned by all v
such that gsupp (v) ⊆ G∗, and similarly we will refer to its
orthogonal complement (G∗)⊥ as the subspace spanned by
all v such that gsupp (v)

⋂
G∗ = ∅. Finally,

Definition 3: A vector v̂ is (G, δ)-accurate with respect to
v∗ if it is G-support accurate, and for each g ∈ G∗, it is true
that 〈

v̂g
‖v̂g‖

,
v∗g
‖v∗g‖

〉
≥ δ. (24)

Notice that if v̂ satisfies Definition 3, then it also satisfies
Definition 2, but the converse is in general not true. Similarly,
if v̂ satisfies Definition 2, then it also satisfies Definition 1,
but the converse is once gain generally not true.

Whereas Definitions 1 and 2 are straightforward to in-
terpret, Definition 3 deserves some further discussion. Es-
sentially, we ask that our approximation not only have the
correct group support, but also that each active group vector
v̂g point approximately in the same direction as the corre-
sponding true vector v∗g . We argue that this is a more natural
notion of success in our setting than statistical “sparsistency”
(c.f. [33], [34]), which asks that correct support and sign be
recovered in the approximation. In particular, if we interpret
these vectors as control gains, then an approximation that is
(G, δ)-accurate yields a controller that is both qualitatively
and quantitatively similar in performance to the underlying
optimal controller v∗.

C. (G, δ)-accuracy of the group norm without overlap

The ideas presented in this section, based on the notion
of group incoherence, are not new and have been stated in
various forms in the literature. (see the the recent review
[19], and the references therein).

We analyze the performance of (23) under the assumption
that there is no overlap between groups. In this case, AG
is easily seen to be a bijection and a group-isometry (such
that A+

GAG is the identity operator), greatly simplifying the
analysis – in fact, as we will discuss at the end of the



section, no such non-asymptotic structural guarantees exist
when there is overlap between groups.

Let G∗ denote the set of non-zero groups in v∗ =
(
v∗g
)
g∈G ,

such that v∗g 6= 0 if and only if g ∈ G∗, and let

S∗ = ⊕g∈G∗Sg,

where the Sg are the subspaces of Rm×p that each Eg maps
to. We can define S∗ as a direct sum of these subspaces due
to the assumption of no overlap between groups.

We assume that for all ∆ ∈ G∗,

min
‖∆‖G,∞=1

‖PG∗A+
GL

+
|S∗ L|S∗AGPG∗∆‖G,∞ ≥ α, (25)

max
‖∆‖G,∞≤1

‖P(G∗)⊥A+
GL

+
|(S∗)⊥ L|S∗AGPG∗∆‖G,∞ ≤ γ,

(26)
and that there exists ν ∈ [0, 1) such that

γ

α
≤ ν (27)

Condition (25), often referred to as a self-incoherence
condition, asks that L+L be bijective when restricted to the
support of the active groups S∗ – this condition limits the
amount of destructive interference between active groups.
Condition (26), often known as a mutual-incoherence condi-
tion, on the other hand, asks that L+L have small gain when
viewed as a mapping from S∗ → (S∗)⊥ – this condition
limits the amount of constructive interference between active
and inactive groups. Thus ν in (27) is a total measure of the
incoherence, or interference, between groups.

We can now state our first consistency result:
Theorem 1: Let conditions (25), (26) and (27) hold, and

suppose additionally that ‖A+
GL+ε‖G,∞ ≤ (κ−1)λ for some

1 ≤ κ < 2/(ν+1). Then
1) The solution v̂ to optimization (23) is AG-support

accurate, and
2) ‖v̂ − v∗‖G,∞ ≤ λ (κ/α).
Note that this theorem states that indeed AG-support

accuracy is possible for any sized ε by choosing λ large
enough. As will be shown, however, this comes at the price
of risking not identifying smaller sized groups, which in
effect, can be “hidden” by the error. In a control context,
this reads that if a particular controller v∗ achieves a large
closed loop norm ε, then optimization (23) will only re-
cover the dominant components of the control action, as
the remaining components may not be large enough to be
detected. Alternatively, if G-support and (G, δ)-accuracy are
desired, the underlying controller v∗ must achieve a good
closed loop performance ε with respect to the size of its
control components – what this means will be formalized in
the following corollaries.

Corollary 1: Suppose the conditions of Theorem 1 hold,
and additionally that ‖v∗g‖ > λ (κ/α) for all g ∈ G∗. Then v̂
is G-support accurate. If in addition, each v∗g has entry wise
magnitude |v∗g

j | > λ (κ/α), then v̂ is sparsistent as well.
In order to prove that v̂ is (G, δ)-accurate, we need to

exploit the fact that the `2 unit ball is a manifold with
curvature – doing so leads to the following lemma.

Lemma 1: Let ∆g = v∗g − v̂g be such that ‖∆g‖ ≤ Cλ.

Then, if ‖v∗g‖ ≥ 5Cλ
1−δ2 , we have that

〈
v∗g , v̂g

〉
≥ δ‖v̂g‖‖v∗g‖.

Lemma 1 is easily interpreted geometrically. Suppose that
we fix a perturbation size ‖∆g‖, but allow v∗g to grow, and
examine the angle between v∗g and v̂g := v∗g +∆g . Then this
angle will become negligible as ‖v∗g‖ becomes large. The
following is then an immediate consequence of Theorem 1
and Lemma 1:

Corollary 2: Suppose that the conditions of Theorem 1
hold, and additionally that ‖v∗g‖ > 5κλ

α(1−δ2) for all g ∈ G∗.
Then v̂ is (G, δ)-accurate.

As can be seen in both of the previous corollaries, the
minimum sizes ‖v∗g‖ of the components of the controller
that are guaranteed to be identified are lower bounded by
λ, which in turn is lower bounded by a function of ε.
As a consequence, it can be seen that controllers leading
to smaller closed-loop norms are easier to identify, as the
sufficient conditions of the corollaries are easier to satisfy.

D. Incoherence and gain estimates

We now specialize the discussion to when y, ε ∈ Rm, x ∈
Rq and L ◦ AG can be identified with a matrix A ∈ Rm×q ,
and provide estimates for α and γ (and hence ν).

In particular, we assume, permuting columns if necessary,
that A admits a block-column partition

A =
[
AG∗ A(G∗)⊥

]
(28)

with AG∗ = (Ag)g∈G∗ , A(G∗)⊥ = (Aj)j∈(G∗)⊥ .
Suppose that the following two conditions are satisfied for

all g 6= j ∈ G

min
‖x‖=1

‖A>g Agx‖ ≥ σgg > 0 (29)

‖A>g Aj‖ ≤ σgj . (30)

Then one can show that

α ≥ σgg − (|G∗| − 1)σgj , γ ≤ |G∗|σgj . (31)

If σgg > (|G∗| − 1)σgj , we can then pick

ν =
|G∗|σgj

σgg − (|G∗| − 1)σgj
. (32)

It is informative to insert this bound into the conditions on
κ and ν in Theorem 1. With a little bit of algebra, we are able
to identify an upper bound on the number of active groups
|G∗| that our sufficient conditions can provide guarantees for:

|G∗| < (2− κ)
σgg + σgj

2σgj
≤ σgg + σgj

2σgj
, (33)

where the final inequality follows from recalling that κ ≥ 1.

E. Extensions to the group norm with overlap

Although traditional estimation (or approximation in our
terminology) errors exist for the group norm with overlap
[19], no non-asymptotic structural recovery results exist.
From a co-design perspective, this is somewhat dissatisfying,
as we are not able to guarantee any of the measures of
success that we have defined as they are all predicated on the



structure (support) of the resulting approximation. However,
due to the empirical success that the group norm with overlap
has seen in practice [28][30], and its asymptotic structural
guarantees [35], we are confident that these technical chal-
lenges can be overcome leading to stronger guarantees – this
is the subject of current work.

VI. A NUMERICAL STUDY

We now return to our stylized example from Section IV.
We first use the fact that ‖X‖F = ‖vec(X)‖ to rewrite
optimization (14) as

minimize
Q

||vec(YT )−M · vec(Q)||2 + . . .

λ
(∑q2

a=1 ‖vec((ea)>Q)‖
)

s.t. Q =
[
Q0 Q1 . . . QN

] (34)

where M is a block lower Toeplitz matrix, with

Mij = Mi−j =
∑
k,l≥0

k+l=i−j

J>k ⊗Hl, (35)

for all i ≤ j, and 0 otherwise.
Unfortunately, we are as of yet unable to find interesting

bounds on ν in terms of a system’s state space parameters.
In light of this, this section will use brute force computations
to understand the limitations of the sufficient conditions that
we have been able to provide, and to show that even when
they do not hold, the group norm regularized optimization
yields AG-support and G-support accurate approximations.

With these objectives in mind, we fix a time horizon of
T = 20, and consider the following random ensemble of
state space parameters. All matrices are in R10×10. We set
D12 = D21 = C1 = C2 = B1 = B2 = I , and for each
problem instance we let A = (Aij) be such that each Aij is
drawn independently uniformly at random from the interval
[−.1, .1]. These latter bounds on the elements of A are such
that A is Hurwitz with probability one (this follows from
Gershgorin’s disk theorem).

Our first numerical study will be to show how σgg ,
σgj and the upper bound (33) vary as the controller order
N increases. In particular, we randomly generated 1000
instances from the aforementioned ensemble and computed
the quantities of interest for N ∈ {1, 2, 3, 4}. The mean
values, as well as their standard deviations, are shown in
Figures 2(a) and 2(b). As can be seen, the usefulness of
our bounds decreases quickly as N increases; however, as
we will see, our algorithm still performs very well on these
design tasks. This would suggest that the sufficient condition
of incoherence between groups stated in equations (29) and
(30) are perhaps not the right ones to consider for control
systems – indeed, due to the LTI structure of the system,
there is “temporal” coherence between columns, as is evident
from the block-lower Toeplitz structure of M .

We first begin by verifying that indeed our sufficient
conditions provide us with the desired accuracy guarantees.
We fix our controller order to N = 1, and aim to design a
3-group sparse controller. We ran 100 examples, beginning
with λ = ‖YT ‖F (so as to begin with 0 active groups),

and decreased λ’s value in .1 increments until the number
of active groups was less than or equal to 3. In order to
validate our results, we conducted a brute force search over
all 3-group sparse controllers in order to identify the desired
controller Q∗ that we were trying to approximate. Indeed
in all 100 trials, we were able to recover an AG-support
accurate approximation, and 34 trials recovered a G-support
accurate estimate, all with respect to Q∗. Furthermore, for all
n-group sparse AG-support accurate estimates, with n < 3,
we verified that they were indeed G-support accurate with
respect to the best n-group sparse controller. This is precisely
the kind of behavior that is desired from a design perspective
(and that is predicted by our analysis) – by increasing λ,
we recover G-support accurate approximations of structurally
simpler and simpler optimal controllers.

We then repeat the experiments for N = 3, and despite
not being able to verify any of our sufficient conditions, we
observe the exact same behavior as in the N = 1 case –
all approximations are AG-support accurate with respect to
the best 3-group sparse controller, and G-support accurate
with respect to their respective n-group sparse controllers.
The number of active groups, with respect to λ, is plotted
in Figure 2(c) for a specific instance of this experiment in
which a G-support accurate approximation with respect to
the optimal 3-group sparse controller was recovered.

VII. CONCLUSION

We argued that that there is a natural theoretical link be-
tween sparse reconstruction and control structure co-design
problems. With a particular focus on the group norm, we
provided conditions for the success of a controller structure
co-design optimization, and approximation bounds of its
solution with respect to the underlying optimal controller.
Then, through the use of an actuator regularization example,
we illustrated the usefulness of these ideas, and observed that
as the regularization penalty was increased, the recovered
solution was G-support accurate with respect to structurally
simpler and simpler optimal controllers.

Directions for future work include developing analogous
results for the group norm with overlap and for alterna-
tive cost functions (such as those expressed via linear or
semi-definite constraints), making connections between the
solutions to infinite dimensional optimizations and their
finite dimensional approximations, and looking to exploit the
structure of the design matrices to yield tighter sufficient
conditions. A broader question is whether the connections
made in Section III can be used to formulate a unified
framework for analyzing joint identification and control
schemes.
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