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Abstract— In this work, we investigate the problem of si-
multaneously learning and controlling a system subject to
adversarial choices of disturbances and system parameters. We
study the problem for a scalar system with l∞-norm bounded
disturbances and system parameters constrained to lie in a
known bounded convex polytope. We present a controller that
is globally stabilizing and gives continuously improving bounds
on the worst case state deviation. The proposed controller
simultaneously learns the system parameters and controls the
system. The controller emerges naturally from an optimization
problem, and balances exploration and exploitation in such
a way that it is able to efficiently stabilize unstable and
adversarial system dynamics. Specifically if the controller is
faced with large uncertainty, the initial focus is on exploration,
retrieving information about the system by applying state-
feedback controllers with varying gains and signs. In a pre-
specified bounded region around the origin, our control strategy
can be seen as passive in the sense that it learns very little
information. Only once the noise and/or system parameters
act in an adversarial way, leading to the the state exiting
the aforementioned region for more than one time-step, our
proposed controller behaves aggressively in that it is guaranteed
to learn enough about the system to subsequently robustly
stabilize it. We end by demonstrating the efficiency of our
methods via numerical simulations.

I. INTRODUCTION

With the proliferation of big-data, and the success of
machine-learning algorithms being applied to planning and
control problems, there has been a renewed interest in
combining and applying learning and control to continuous
systems. Modern results build on the foundational ideas of
adaptive control [1], [2], which we cannot hope to adequately
survey here, but place an emphasis on finite-time, rather than
asymptotic, guarantees of performance and stability.

To the best of our knowledge, recent results of this nature
have focused on the stochastic setting wherein system param-
eters are unknown, and must be identified despite stochastic
excitations to the system. By combining concentration results
from high-dimensional statistics with techniques from robust
and optimal control, regret and performance bounds can
be obtained as a function of the number of data points
seen by the controller. Notable examples include [3]–[7],
which provide varying degrees of guarantees and practically
applicable algorithms. However, as far as we are aware,
no comparable results exist for the setting of bounded but
adversarial process noise and parametric uncertainty.

Recently it has been shown that in the l∞ bounded
adversarial setting, solutions to the state-estimation problem
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[8], [9] and the robust control problem subject to quantization
and delay in the control loop [10] admit particularly intuitive
and appealing forms. This work shows that the same holds
true for a joint learning and control problem.

Our main contribution is what we call a passive-aggressive
learning and control algorithm that trades off between identi-
fying the true system parameters and stabilizing the system.
The defining feature of this controller is that unless the sys-
tem parameters and noise act in an adversarial way, pushing
the state sufficiently far away from the origin, it is content
with passively observing the state evolution and updating its
uncertainty set. However, when the system conspires to push
the state sufficiently far from the origin, it aggressively learns
the system parameters and applies control actions aimed at
stabilizing the system.

The rest of the paper is organized as follows: in Section
II we define the problem and the necessary notions of
consistent parameter sets given a sequence of observations.
In Section III we then show that in the case of “strongly
stabilizable” initial parameter uncertainty sets, a simple
static state-feedback policy is sufficient to guarantee robust
stability for all possible choices of system realization. We
then build on this result in Section IV to show that if
the controller updates the set of feasible system parameters
with each observation, the controller performance can be
strictly improved. Finally, in Section V we consider the
case of general initial uncertainty sets, and show that if a
two-stage controller is applied, then the uncertainty set can
eventually be reduced to one that is strongly stabilizable,
allowing us to switch to the aforementioned control policies.
We demonstrate the efficacy of our approach in Section VI,
and end with conclusions and future work in Section VII.

II. SYSTEM AND PROBLEM DEFINITION

A. System Dynamics

We consider the scalar linear discrete-time system

xn+1 = axn + bun + wn (1)

|wn| ≤ η
[
a
b

]
∈ P0 (2)

with the state xn, the control input un and the disturbance
wn. We assume that the disturbance wn is l∞ bounded by
η, and that the state-space parameters a and b are unknown
constants, but that are constrained to lie in a known bounded
convex polytope P0.

We furthermore assume that

b 6= 0 ∀
[
a
b

]
∈ P0, (3)



i.e., that the system is controllable for all possible realizations
of the unknown state-space parameters (a, b).

B. Consistent Sets

We denote by xi:j and ui:j the stacked vector of state
values xn and control inputs un, respectively, for i ≤ n ≤ j.
It follows from the dynamics (1) that at time N , the following
entry-wise inequality must hold for the true parameters (a, b).∣∣∣∣x1:N − [x0:N−1, u0:N−1]

[
a
b

]∣∣∣∣ ≤ 1η, (4)

where 1 is the all ones vector of compatible dimension. This
inequality therefore allows us to characterize the subset of the
initial uncertainty set P0 that is consistent with the observed
state and control input histories given the known bound η on
the magnitude of the disturbance process wn.

This motivates the following definition of the consistent
set at time N :

S(x0:N , u0:N−1)

:=

{[
a
b

]∣∣∣∣ ∣∣∣∣x1:N − [x0:N−1, u0:N−1]

[
a
b

]∣∣∣∣ ≤ 1η

}
. (5)

It then follows that given state and control histories x0:N ,
u0:N−1 and the initial uncertainty set P0, we have that [a, b]T

lies in the bounded convex polytope P0 ∩ S(x0:N , u0:N−1).
For N = 1, the set S(x0:1, u0) reduces to a slice of

thickness 2η/
√
x20 + u20 with normal vectors ±[x0, u0]T in

parameter space (see Fig.1). This motivates the following
recursive definition of the consistent set S(x0:N , u0:N−1) at
time N as the intersection of N such slices:

S(x0:N , u0:N−1) =

N−1⋂
i=0

S(xi:i+1, ui). (6)

Fig. 1: Example of S(x0:1, u0)

C. Problem Statement

Our objective is to find the best causal control strategy
uk(x0:k,P0) that minimizes the worst-case state deviation
‖x1:∞‖∞ despite adversarial noise w0:∞ and system param-
eter choices [a, b] ∈ P0.

Formally, we seek a solution to the following infinite-
horizon min-max problem

V (x0,P0) := min
u0:∞

Q1:∞(x0,P0, u0:∞) (7)

where we define Q1:N (x0,P0, u0:N−1) as

Q1:N (x0,P0, u0:N−1) :=
max

[ ab ]∈P0

max
‖w0:N−1‖∞≤η

‖x1:N‖∞

s.t. dynamics (1).

Our approach is to begin with what we term strongly
stabilizable initial uncertainty sets P0, that is to say initial
uncertainty sets for which an appropriately chosen static
state-feedback gain is guaranteed to be stabilizing for all
realizations of the system parameters (a, b). We show that
such a policy is optimal for optimization problem (7)
restricted to static memoryless control policies. We then
show that by adding an adaptive element to such a control
policy, the performance can be further improved, and that an
exploration/exploitation strategy naturally emerges. Finally,
we tackle the case of general initial uncertainty sets and
show that after an initial “passive” learning phase, the un-
certainty set is eventually “aggressively” reduced to one that
is strongly stabilizable, allowing for our previously derived
adaptive strategy to be applied.

III. ROBUST STATIC STATE-FEEDBACK FOR STRONGLY
STABILIZABLE UNCERTAINTY SETS

In this section, we consider a restriction of optimization
problem (7) to static state-feedback control policies, i.e., we
restrict un = kxn for all n ≥ 0. The resulting optimization
problem then reads as

VRSF (x0,P0) (8)

=

min
k

max
[ ab ]∈P0

max
‖w0:∞‖∞≤η

‖x1:∞‖∞

s.t. xn+1 = (a+ bk)xn + wn,
∀n ≥ 0.

(9)

= min
u0:k=kx0:k

Q1:∞ (x0,P0, u0:∞) (10)

=: min
k
Q1:∞
RSF (x0,P0, k) (11)

As we are restricting ourselves to static state-feedback
polices, it follows that VRSF (x0,P0) is an upper bound for
V0(x0,P0), i.e.:

V0(x0,P0) ≤ VRSF (x0,P0). (12)

We consider this simpler problem as it has several appeal-
ing properties. First, the optimal cost-to-go VRSF (x0,P0)
and the corresponding minimizing k∗ can be solved for in
closed form. Further it motivates the definition of strongly
stabilizble initial uncertainty sets P0, which naturally cap-
tures how difficult an uncertain system can be to stabilize.
To that end, we introduce the following measure of stabiliz-
ability for an uncertainty set P .

Definition III.1. We use λ(P) to denote the stability margin
of the parameter set P , and define it as

λ(P) := min
k

max
[ ab ]∈P

|a+ bk| . (13)

Furthermore, we call the corresponding minimizer

K(P) = argmink max
[ ab ]∈P0

|a+ bk| (14)

the gain of the parameter set P0.

The stability margin of a set λ(P) is a functional mapping
sets to R+

0 and describes the smallest system eigenvalue



achievable by a constant state-feedback, assuming worst case
parameter choice of [a, b]

T ∈ P . It then follows that if
for the initial uncertainty set P0, it holds that the stability
margin satisfies λ(P0) < 1, then we can use k = K(P0) as
a state-feedback control law to stabilize the system for all
parameters in P0. We will refer to such initial uncertainty sets
P0 as strongly stabilizable. On the other hand, if λ(P0) ≥ 1
then for any state-feedback controller un = kxn there will
exist some [a0, b0] ∈ P0 that leads to an unstable closed-
loop system, and therefore one cannot guarantee stability of
the closed loop system for any static state-feedback control
policy.

As the next lemma shows, when the initial uncertainty
set is strongly stabilizable, the optimal solution to the static
state-feedback control problem (11) is precisely given by the
gain of the parameter set P0, and the cost-to-go is governed
by its stability margin.

Lemma III.1. If the initial uncertainty set P0 is strongly
stabilizable (i.e., if λ(P0) < 1), then the cost-to-go
VRSF (x0,P0), as described in equation (11), is minimized
by the choosing k = K(P0), and the optimal value is given
by

max{λ(P0)|x0|+ η,
1

1− λ(P0)
η}. (15)

Conversely, if the initial uncertainty set P0 is not strongly
stabilizable (i.e., if λ(P0) ≥ 1), then for any choice of k, it
holds that VRSF (x0,P0) =∞.

Proof. Notice that xn+1 = (a+ bk)xn + wn implies

xn = (a+ bk)Nx0 +

N−1∑
i=0

(a+ bk)n−1−iwi (16)

and

max
‖wk‖∞≤η

|xN |

s.t. xn+1 = (a+ bk)xn + wn
(17)

= |a+ bk|N |x0|+
|a+ bk|N − 1

|a+ bk| − 1
η (18)

Therefore,

max
‖wn‖∞≤η

‖x1:∞‖∞
s.t. xn+1 = (a+ bk)xn + wn, ∀n ≥ 0

(19)

=
max
N∈N
N≥1

max
‖wn‖∞≤η

|xN |

s.t. xn+1 = (a+ bk)xn + wn, ∀n ≥ 0
(20)

= max
N∈N
N≥1

|a+ bk|N |x0|+
|a+ bk|N − 1

|a+ bk| − 1
η (21)

=:C(|a+ bk|, |x0|, η) (22)

So VRSF (x0,P0) can be written as

VRSF (x0,P0) = min
k

max
[ ab ]∈P0

C(|a+ bk|, |x0|, η) (23)

No since C(|a + bk|, |x0|, η) is monotonic in |a + bk|, we
obtain

VRSF (x0,P0) = C(λ(P0), |x0|, η) (24)

=


∞ if λ(P0) ≥ 1

max
n∈N
n≥1

λ(P0)n |x0|+ 1−λ(P0)
n

1−λ(P0)
η if λ(P0) < 1 (25)

with k∗ = K(P0) as the minimizer state-feedback gain.
Finally, the cost achieved for strongly stabilizable initial

uncertainty sets is seen to be monotonic increasing (decreas-
ing) in n if (1−λ(P0)|x0| > (<)η, and hence is maximized
at either n = 1 or n =∞, from which the cost in equation
(15) follows.

With this result, we see that for strongly stabilizable initial
uncertainty sets P0, we can pick a static state-feedback
controller with k = K(P0) that is guaranteed to robustly
stabilize the system for any system realization (a, b) ∈ P0,
and the achieved optimal cost (15) provides a finite upper
bound to V (x0,P0). This result also shows that no static
feedback gain can be guaranteed to stabilize the system if
P0 is not strongly stabilizable, i.e. λ(P0) ≥ 1.

Although this robust feedback controller is guaranteed to
stabilize the system, it does so in an inefficient way. In par-
ticular, it does not update its control policy to reflect the fact
that with each observation, more information about the un-
derlying true parameters is revealed. As previously discussed,
the observations x0:N , u0:N−1 allow us to reduce the space
of consistent parameters [a, b]T to be P0 ∩S(x0:N , u0:N−1).
In what follows we improve upon the static state-feedback
policy results of this section, and ultimately show that
learning is necessary to compute stabilizing controllers for
general initial uncertainty sets P0.

IV. ROBUST ADAPTIVE STATE-FEEDBACK FOR
STRONGLY STABILIZABLE UNCERTAINTY SETS

Keeping our focus on strongly stabilizable initial uncer-
tainty sets, we propose two controllers that strictly outper-
form the static state-feedback policy k = K(P0) defined in
the previous section. The following adaptive schemes, which
we call weakly adaptive RSF and strongly adaptive RSF,
simultaneously learn the system dynamics while controlling
the system. The latter algorithm decides at every time-step
n between a control action that reduces |xn+1| and an ex-
ploratory control action that leads to more information about
the system parameters. Our key result is a decomposition
theorem that exploits the fact that the control policy at time
n is allowed to be a function of all past state-measurements
x0:n. In what follows we let a ∨ b := max {a, b} to help
simplify notation.

A. Weakly Adaptive Robust State-Feedback Controller

The robust state-feedback controller uRSF (x) at time step
n is K(P0)xn and is not using the information of recent
observations. A rather simple yet significantly better strategy
is to apply K(Pn)xn at time-step n. We will refer to



this controller as the weakly adaptive robust state-feedback
controller uWRSF (x0:n):

uWRSF (x0:n) = K(Pn)xn (26)

B. Strongly Adaptive Robust State-Feedback

Definition IV.1. Define the one-step reachable set
R(x0, u0,P0) as the set of possible x1 given the initial
condition x0, the initial uncertainty set P0 and the initial
disturbance w0, i.e.

Rη(x0, u0,P0) (27)

=

{
ax0 + bu0(x0) + w0|

[
a
b

]
∈ P0, |w0| ≤ η

}
(28)

We then have that the following decomposition theorem
holds:

Theorem IV.2. For the cost-to-go function V as defined in
optimization problem (7), it holds that

V (x0,P0)

= min
u0

[
Q1:1(x0,P0, u0)∨

max
x1∈R(x0,P0,u0)

V (x1,P0 ∩ S(x0:1, u0))

]
Proof. First notice that we can write

V (x0,P0)

= min
u0:∞

Q1:∞(x0,P0, u0:∞)

= min
u0:∞

max
[ ab ]∈P0

max
‖w0:∞‖∞≤η

‖x1:∞‖∞ s.t. dynamics (1)

= min
u0

[
max

x1∈R(x0,u0,P0)
min
u1:∞

max
[ ab ]∈P0∩S(x0:1,u0)

max
‖w1:∞‖∞≤η

|x1| ∨ ‖x2:∞‖∞

]
s.t. dynamics (1),

where the last equality follows from the fact that the state
x1 is known to the sequence of control actions u1:∞, and
that ‖x1:∞‖∞ = |x1| ∨ ‖x2:∞‖∞. This last line can further
be rewritten as

V (x0,P0)

= min
u0

[(
max

x1∈R(x0,u0,P0)
|x1|
)
∨
(

max
x1∈R(x0,u0,P0)

. . .min
u1:∞

max
[ ab ]∈P0∩S(x0:1,u0)

max
‖w1:∞‖∞≤η

‖x2:∞‖∞

)]
s.t. dynamics (1)

= min
u0

[
Q1:1(x0,P0, u0)∨

max
x1∈R(x0,u0,P0)

V (x1,P0 ∩ S(x0:1, u0), u1:∞)

]
where the first equality follows from the fact that
maxx f(x) ∨ g(x) = (maxx f(x)) ∨ (maxx g(x)), and the
second from the definition of the cost-to-go function V , as

defined in (7), and from the identity max
x1∈R(x0,u0,P0)

|x1| =

Q1:1(x0,P0, u0(x0)).

Theorem IV.2 sheds light on the structure of the optimal
control policy. Specifically, let Pi := P0 ∩ S(x0:i, u0:i−1);
then the optimal control action at time i is given by1

ui(x0:i) = argminu max
xi+1∈R(xi,Pi,u)

|xi+1|∨ (29)

V (xi+1,Pi ∩ S(xi:i+1, u)) . (30)

In particular, we see that the control action ui is a function
of both the state history x0:i and the updated uncertainty set
Pi, and naturally results in a trade-off between exploration
and exploitation. If the first term dominates the cost function,
this indicates that the controller is in an exploitation mode,
using its gathered information on the uncertainty set to
minimize state deviation. In contrast, if the second term
dominates, this can be interpreted as an exploration action
aimed at reducing the effects of parametric uncertainty on
future state deviations.

Unfortunately, Eq. (29) do not provide a practical means
of computing an optimal controller. Nevertheless, we can
approximate (29) by using VRSF as an upper bound for the
cost-to-go function in (29). In particular, we suggest using
the solution to the following optimization problem as the
control policy at time i:

uSRSFi (xi,Pi) (31)
=argminu max

xi+1∈R(xi,Pi,u)

. . . |xi+1| ∨ VRSF (xi+1,Pi ∩ S(xi:i+1, u)) (32)

V SRSFi (xi,Pi) (33)
=minu max

xi+1∈R(xi,Pi,u)

. . . |xi+1| ∨ VRSF (xi+1,Pi ∩ S(xi:i+1, u)) (34)
(35)

Thus to apply ûSRSF requires the solution of a scalar min-
max problem at every time-step. As the next theorem shows,
if the initial uncertainty set is strongly stabilizable, then this
SRSF policy is stabilizing and performs at least as well as the
static state-feedback policy described in the previous section
for large initial conditions x(0) – empirically however we
see a strict and dramatic improvement in performance, and
future work will look to close this gap between theory and
practice.

C. Performance Bounds Comparison

Here we show that under suitably adversarial choices of
control action and system parameters, both the weakly and
strongly ARSF policies outperform the static memoryless
policy defined in the previous section.

Theorem IV.3 (RSF vs. WRSF). Let xRSFn and xWRSF
n

be sequences generated from running uRSF and uWRSF

1This follows from Theorem IV.2 by a simple induction argument which
is omitted in the interest of space.



in closed loop with the same initial condition x0. Then the
sequences are bounded by∣∣xRSFn

∣∣ ≤ BRSFn (36)∣∣xWRSF
n

∣∣ ≤ BWRSF
n (37)

with the bounds BRSFn and BWRSF
n defined as

BRSFn = λ(P0)n |x0|+
n−1∑
i=0

λ(P0)iη (38)

BWRSF
n (P0:n−1) =

n∏
j=1

λ(Pj−1) |x0|+
n−1∑
i=0

i∏
j=0

λ(Pj−1)iη

(39)
λ(P−1) := 1 (40)

Furthermore, BWRSF
n ≤ BRSFn i.e. uWRSF has a tighter

performance bound.

Proof. Rolling out the dynamics

xn =

n∏
j=1

(a+ bkj−1)x0 +

n−1∑
i=0

i∏
j=0

(a+ bkj)wi (41)

we can upperbound |xn| by

|xn| ≤
n∏
j=1

|(a+ bkj−1)|x0 +

n−1∑
i=0

i∏
j=0

|(a+ bkj)|η (42)

Now if we apply uRSF and uSRSF we can guarantee |a +
bki| ≤ λ(P0) and |a+ bki| ≤ λ(Pi) respectively. This gives
the defined bounds BWRSF

n and BRSFn . Furthermore, since
λ(Pi+1) ≤ λ(Pi) ≤ · · · ≤ λ(P0) < 1 we show BWRSF

n ≤
BRSFn .

Theorem IV.4 (SRSF vs. WRSF). Let xWRSF
n and xSRSFn

be sequences generated from running uWRSF and uSRSF in
closed loop with the same initial condition x0. Furthermore,
assume that both sequences obtain the same uncertainty sets
Pn, then xSRSFn and xWRSF

n are upper bounded by

|xSRSFn | ≤ V SRSF (xSRSFn−1 ,Pn−1) (43)∣∣xWRSF
n

∣∣ ≤ BWRSF
n (P0:n−1) (44)

with BWRSF
n defined as in (IV.3). Then |xSRSFn | ≤

BWRSF
n (P0:n−1), i.e. uSRSF has no worse performance

bound than uWRSF .

Proof. We prove our result by induction. Trivially,
|xSRSF0 | ≤ |xWRSF

0 | = BWRSF
0 Now for arbitrary j assume

that |xSRSFj | ≤ BWRSF
j , then

|xSRSFj+1 | ≤ V SRSF (xSRSFj ,Pj) ≤ V RSF (xSRSFj ,Pj) . . .
≤ V RSF (BWRSF

j (P0:j−1),Pj) = BWRSF
j+1 (P0:j)

The second inequality follows from VWRSF being a relax-
ation of V SRSF , the third inequality follows from VWRSF

being increasing in the magnitude of the initial condition.
The final equality follows by inspecting the definition of
BWRSF
j and V RSF .

Finally the following corollary, which will be needed in
the proof of our main result in the next section, is immediate
from the previous results.

Corollary IV.1. If |x(0)| ≥ η/(1− λ(P0)), λ(P0) < 1 and
we apply uSRSFn (xn,Pn) as a control law, then |xn| will be
bounded as

|xn| ≤ η/(1− λ(P0)) + λ(P0)n |x(0)|

V. PASSIVE AGGRESSIVE FEEDBACK CONTROLLER

In this section we introduce a control policy that is applica-
ble to initial uncertainty sets that are not strongly stabilizable.
The controller evolves according to two stages: at first, a
“passive-aggressive” feedback controller is deployed that is
use as long as the consistent set P0 ∩ S(x0:N , u0:N−1) is
not strongly stabilizable. We show that this control policy
is guaranteed to shrink the initial uncertainty set to one that
is strongly stabilizable once the state becomes sufficiently
large. Once the uncertainty set has been reduced to a strongly
stabilizable one, the controller switches to the ARSF strategy
described in the previous section and drives the state to the
origin.

Definition V.1. Let Pn be the remaining uncertainty in
the system parameters after observing x0:n and u0:n−1.
Specifically

Pn+1 = Pn ∩ S (xn:n+1, un) (45)

where we set P0 to be the initial uncertainty set.

Definition V.2. Define kmax(Pi) as the maximum deadbeat
controller gain among the parameters in Pi:

kmax(Pi) := max
[ ab ]∈Pi

∣∣∣−a
b

∣∣∣ (46)

We begin with an intermediate result that shows if the
system state is sufficiently large, then the stability margin of
the uncertainty set can be reduced by an amount governed
by the noise bound η and the size of the state itself. In this
way, there is a notion of signal-to-noise that comes into play
in the ability to learn an uncertainty set.

Theorem V.3 (Passive-Aggressive Learning). Let P0 be the
initial (not necessarily strongly stabilizable) uncertainty set
and fix positive constants λ∗, p > 0 satisfying λ∗ > 1

p .
Consider the following control strategy at time-step n:

un = knxn (47)

where

kn = −sign(kn−1)
kmax(Pn)

λ∗p− 1
, k−1 = −1;

Then if there exists some n0 ≥ 1 such that
min{|xn0−1|, |xn0−2|} ≥ pη, it holds that λ(Pn0) ≤ λ∗.



Proof. Define n−1, n−2 to be n0−1 and n0−2 respectively.
Then,

λ(Pn0) = λ
(
Pn−1 ∩ S(xn−2:n0 , un−2:n−1)

)
≤ λ

(
Pn−1

∩ B(xn−2:n0
, un−2:n−1

)
)

≤ kmax
(
Pn−1

)
∆bB(xn−2:n0

, un−2:n−1
) . . .

. . .∆aB(xn−2:n0
, un−2:n−1

) (48)

where B(. . . ) represents the smallest outer-bounding box set
of the S(xn−2:n0 , un−2:n−1). Furthermore, ∆bB and ∆aB are
the maximum uncertainty of parameters a and b in the set B
as discussed in the appendix (I). Finally we note that the last
inequality follows from the discussion on stability margins
of boxed uncertainties in (I). Now, as kn−2

and kn−1
have

opposite sign by construction, we obtain from app.(I):

∆bB(xn−2:n0 , un−2:n−1)

=

(
η

|xn−2
|

+
η

|xn−1
|

)
1

|kn−1
|+ |kn−2

|
(49)

∆aB(xn−2:n0
, un−2:n−1

)

=

(
|kn−1 |η
|xn−2 |

+
|kn−2 |η
|xn−1 |

)
1

|kn−1 |+ |kn−2 |
(50)

Now, since by assumption we have that
min{|xn−1

|, |xn−2
|} ≥ pη, we can upper bound equations

(49), (50) by

∆bB(xn−2:n0 , un−2:n−1) ≤ 1

p

2

|kn−1 |+ |kn−2 |
(51)

∆aB(xn−2:n0
, un−2:n−1

) ≤ 1

p
(52)

Furthermore, notice that kmax(Pn−2) ≥ kmax(Pn−1) so we
have

|kn−1 |+ |kn−2 | ≥
2kmax(Pn−1

)

λ∗p− 1
(53)

⇔ 2

|kn−1 |+ |kn−2 |
≤ λ∗p− 1

kmax(Pn−1)
, (54)

which lets us further upper-bound (51) by

∆bB(xn−2:n0
, un−2:n−1

) ≤ 1

kmax(Pn−1
)

(
λ∗ − 1

p

)
(55)

Finally, plugging the bounds (55) and (52) into equation (48)
gives us the desired result:

λ(Pn0
) ≤

kmax(Pn−1)

kmax(Pn−1)

(
λ∗ − 1

p

)
+

1

p

≤ λ∗

With this ability to learn the uncertainty set, we now show
how a two-stage controller can lead to a stabilizing (in the
BIBO sense) adaptive controller.

Theorem V.4 (Passive-Aggressive Learning and Control).
Let P0 be an initial (not necessarily strongly stabilizable)
uncertainty set, and fix positive constants λ∗, p > 0, s.t.

1 − 1
p > λ∗ > 1

p fixed constants. Consider the following
feedback control for time-step n:

un =

{
knxn If λ(Pn) > λ∗

ûARSFn (xn,Pn) If λ(Pn) ≤ λ∗

where

kn = −sign(kn−1)
kmax(Pn)

λ∗p− 1
, k−1 = −1;

Then there exists at most one time-step n0, s.t. |xn0 | >
|xn0−1| > |xn0−2| > pη. Furthermore, if such n0 exists,
then λ(Pn) ≤ λ∗, ∀n.

Proof. First, notice that if for some n∗, it holds that |xn∗ | ≥
pη and λ(Pn∗) ≤ λ∗, then by Thm.(IV.1), we have that
∀n ≥ n∗:

|xn| ≤ η/(1− λ∗) + λ∗(n−n
∗) ||x(0)| − η/(1− λ∗)|

and since

1− 1

p
> λ∗ ⇔ 1− λ∗ > 1

p
⇔ 1

1− λ∗
η ≤ pη (56)

we see that there cannot be a n0 ≥ n∗ s.t.
|xn0
| > |xn0−1| > |xn0−2| > pη.

Now let us assume that there exists n0 such that |xn0 | >
|xn0−1| > |xn0−2| > pη. Then our previous discussion
implies that λ(Pn0−1) > λ∗ and λ(Pn0−2) > λ∗ has to hold.
This implies that for n = n0−1 and n = n0−2 the learning
feedback controller (47) is being applied. Furthermore, since
|xn0−1| > |xn0−2| > pη, we learn aggressively and by
Thm.V.3, we obtain λ(Pn0) ≤ λ∗. Finally, referring to our
previous discussion, this implies that there does not exist a
n1 ≥ n0 s.t. |xn1

| > |xn1−1| > |xn1−2| > pη, since we start
applying uARSF and begin driving the state into the region
|x| ≤ pη.

The “passive-aggressive” nomenclature is chosen because
the policy is such that if the system parameters and process
noise are stabilizing (i.e., keep the state close to the origin),
then we only focus on learning the uncertainty set via the
learning control policy (47) – this is the passive phase of
the control policy. In particular, if for the specific process
noise and system parameter realizations no such n0 exists,
then by definition we are guaranteed to have |xn| ≤ Cη for
all n, where C is a constant depending only on p, λ∗ and
kmax(Pn) – this follows directly from noting that the state
can only exceed pη in size for at most one time step at a time.
In contrast, when the noise is such that the state is pushed
sufficiently far from the origin, we are able to aggressively
decrease the stability margin of the uncertainty set and switch
to an ARSF policy. The result is a stabilizing control scheme
that is applicable to arbitrary initial uncertainty sets P0.
Future work will explore two parallel directions: (a) adaptive
selections of p and λ∗ and performance bounds for the
suggested approach, and (b) the injection of artificial noise
into the learning step to guarantee that the state eventually
exceeds pη in magnitude.



VI. SIMULATION RESULTS

In the following we show how the passive-aggressive
controller performs under different scenarios. Recall, that our
plant is modeled as

xn+1 = axn + bun + wn (57)

|wn| ≤ η
[
a
b

]
∈ P0 (58)

We set the initial uncertainty set to be

P0 =

{[
a
b

]∣∣∣∣− 3 ≤ a ≤ 3, 0.1 ≤ b ≤ 3

}
(59)

and we pick the true parameters of the system to be

a0 = 2 b0 = 0.5. (60)

The uSRSF controller is parametrized with p = 10 and
λ∗ = 0.5. Notice that this initial uncertainty set is not
strongly stabilizable. In what follows, we apply the controller
described in Theorem V.4 for different noise and system
parameter realizations: fixed system parameters and adversar-
ial/random noise, adversarial system parameters and noise,
and fixed parameters with no noise.

Each of the figures (??)-(4) show sequences of the state
xn and control action un and the maximum and minimum
feasible a and b of the current polytope Pn. The right
subfigures overlay the area of all polytopes Pn and display
how the uncertainty polytopes Pn shrink with each iteration.
The shade of the polytopes becomes lighter with increasing
n.

For the simulations with adversarial noise, we choose
wk = sign(axk+buk) which is easily seen to be the solution
to the inner maximization problem in equation (IV.2) with the
surrogate function VRSF to determine the adversarial noise
and system parameters.

Notice that λ(Pn) decreases monotonically, and in pres-
ence of noise the controller learns to stabilize the system
within two time-steps. It is also worth noticing that in
presence of no noise, the controller still chooses to per-
turb the system on purpose to gather information, i.e. an
exploration phase naturally emerges to better identify the
system parameters before a robustly stabilizing control policy
is applied.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we defined and analyzed the passive-
aggressive learning and control strategy for scalar systems
with bounded but adversarial process noise and parametric
uncertainty. We showed that for strongly stabilizable initial
uncertainty sets, sharp bounds on the state-deviation can be
obtained using an ARSF control policy. We then extended
these results to the general setting by proposing a two-
stage controller: the first stage seeks to passively learn the
system so long as the state remains sufficiently close to the
origin. However, if the process and system noise are such
that the state is pushed sufficiently far from the origin, the
controller is able to aggressively reduce the uncertainty set to
one that is strongly stabilizable, thus allowing for either the
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Fig. 2: x0 = 1, a0 = 2, b0 = 0.5, η = 1, λ∗ = 0.5, random
noise

weakly or strongly ARSF policies to be applied. Future work
will look to actively inject noise into the passive stage of
the aforementioned two-stage control policy to expedite the
learning process, as well as characterize sharp regret bounds
on the proposed policy. Of additional interest is the extension
of the proposed methods to the vector valued setting.

APPENDIX I
STABILITY MARGIN BOUNDS

A. Box-shaped Uncertainty Sets
Lemma I.1. Let B be a controllable boxed uncertainty

B =

{[
a
b

]∣∣∣∣ la ≤ a ≤ ua
0 < lb ≤ b ≤ ub

}
and define ∆bB, ∆aB, aav , bav , kav as

aav = (ua + la)/2 bav = (ub + lb)/2

∆aB = (ua − la)/2 ∆bB = (ub − lb)/2

kav = −aav
bav

where aav , bav is the average system of the box and kav the
corresponding deadbeat feedback. Then the stability margin
of B can be computed as

λ(B) = |kav|∆bB + ∆aB

and can be interpreted geometrically as shown in Fig. (??).

Proof. The proof is omitted but follows by solving the
following optimization problem

min
k

max
la ≤ a ≤ ua
lb ≤ b ≤ ub

|a+ bk|
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Fig. 3: x0 = 1, a0 = 3, b0 = 3, η = 1, λ∗ = 0.5, adversarial
noise and system

B. Approximation for S(xi:i+2, ui:i+1) in Passive-
Aggressive Learning

Consider applying u1 = k1x1 and u2 = −k2x2 as a
feedback controller with k1 > 0, k2 > 0. Then the resulting
uncertainty set S(xi:i+2, ui:i+1) resembles a parallelogram as
shown in Fig.(5). An approximation of the stability margin
λ(S(xi:i+2, ui:i+1)) is the stability margin of its outer-
bounding box, i.e. λ(B(xi:i+2, ui:i+1)). Using the notation
in Fig.(5) and Lem.(I.1), the approximation can be computed
as

λ(B(xi:i+2, ui:i+1))

=kav(B(xi:i+2, ui:i+1))(x+ y) + k1x+ k2y

From simple geometry, notice that the shaded area A can be
computed in three ways:

A = h1

√
1 + k21x = 2η

x

|x1|
(61)

= h2

√
1 + k22y = 2η

y

|x2|
(62)

= (x+ y)(k1x+ k2y)− k1x2 − k2y2 (63)

We can use these equations to solve for x and y and finally
obtain:

λ(B(xi:i+2, ui:i+1))

=kav (B(. . . ))

η
|x2| + η

|x1|

k2 + k1
+
k2

η
|x1| + k1

η
|x2|

k1 + k2
(64)
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Fig. 4: x0 = 0.1, a0 = 2, b0 = 0.5, η = 1, λ∗ = 0.5, no
noise

Fig. 5: Example uncertainty set after two timesteps of the
passive-aggressive learner
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[2] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[3] A. Rantzer, “Concentration bounds for single parameter adaptive
control,” IEEE 2018 American Control Conference, Submitted to.,
2017.

[4] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample
complexity of linear quadratic regulator,” Working draft, 2017.

[5] C.-N. Fiechter, “Pac adaptive control of linear systems,” in Proceed-
ings of the tenth annual conference on Computational learning theory.
ACM, 1997, pp. 72–80.

[6] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Online least squares
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