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Abstract— Our previous results proposed an iterative scalable
algorithm for the systematic design of sparse, small gain
feedback strategies that stabilize the evolutionary dynamics
of a generic disease model with linear pharmacodynamics.
In this manuscript, we use piecewise linear approximations
to model nonlinear drug effects. We leverage results from
optimal controller synthesis for positive systems to formulate
the feedback synthesis problem as an optimization problem that
sequentially explores piecewise linear subsystems corresponding
to higher and higher treatment dosages.

I. INTRODUCTION AND MOTIVATION

A challenge inherent to the treatment of certain infectious
and non-infectious diseases, such as HIV or cancer, is
the risk that the pathogen or tumor will evolve away and
become resistant to treatment methods that comprise the
standard of care [1], [2], [3], [4]. Especially vulnerable to this
phenomenon are treatment methods that involve exposing
the disease population (such as viruses or cancer cells) to
therapies targeting specific molecules involved in disease
progression for an extended period of time. While these
targeted therapies have the benefit of allowing physicians
to tailor treatments to a patient’s tumor cell population, they
nonetheless establish an environment in which the occurrence
of mildly drug resistant pathogens or tumor cells can develop
an evolutionary advantage over those for which the therapy
is targeted [5], [6], [7], [8], leading to so called ’treatment-
escape’.

Pharmacodynamic models are used to quantitatively de-
scribe nonlinear drug dose-responses and model drug recep-
tor relationships. These models are often described using
combinations of nonlinear Hill functions, and allow for
the modeling of drug saturation effects [9], [10], [11].
These pharmacodynamic nonlinearities are further increased
with the fact that drugs administered in combination can
have independent additive effects or can otherwise exhibit
synergistic or antagonistic dose dependent behavior, further
complicating the design of suitable combination therapies
[12].

The challenge of designing treatment protocols that pre-
vent escape is one that has been addressed by control
theoretic methods. For cancer therapy, results in this spirit
apply methods from optimal and receding horizon control
[13], [14], as well as gain scheduling [15], to synthesize
treatment protocols that are robust to parameter uncertainty,
an inherent issue in all biological systems. The authors in
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[16], present a multi objective optimization formulation to
solve the combination therapy problem for different initial
tumor populations, when the drugs under consideration have
additive, linear effects on cell viability. Proposed combina-
tion treatments were confirmed experimentally in a murine
lymphoma model [17]. In the context of HIV and antiretro-
viral therapy, the authors in [18] propose a discrete time
formulation that allows for the design of switching therapy
strategies to delay the emergence of highly resistant mutant
viruses. Recent results in [19] and [20], consider a simplified
bilinear model and the optimal control problem is shown to
be convex over a finite horizon for a predefined set of initial
states.

There have been several attempts to deal with nonlin-
earities of HIV infection in the literature, in particular
using model predictive control (MPC) to design optimal
antiretroviral drug dosing strategies [21], [22]. An issue
with the use of MPC for HIV dynamics involving Hill
functions is that an essential feature of the system, that
of nonlinearities associated with ligand/receptor binding, is
linearized away. In particular, such an approach can lead to
a model that underestimates the efficacy of a drug at higher
concentrations, and over estimates its efficacy at low dosages
unless a sufficiently small update time is taken. This latter
restriction may then lead to strategies that are no longer
realistic in a biomedical application, where it may be difficult
to update the administered therapies at the frequency dictated
by the MPC controller. In this paper, we take an alternative
approach and attempt to design constant drug therapies by
taking the non-linearities into account more explicitly.

In [23], we introduced a scalable, iterative algorithm
for the principled design of targeted combination therapy
concentrations that explicitly accounts for the evolutionary
dynamics of a generic disease model. This algorithm was
effective in generating robustly stabilizing controllers, while
simultaneously allowing the designer to explore explicit trade
offs between closed loop performance, sparsity in controller
structure and gain minimization. Leveraging recent results
from positive systems [24], we formulated this algorithm
as a second order cone program (SOCP), which made the
controller synthesis scalable. However it could not take into
account a) the pharamacodynamics of the input, potentially
suffering from over or underestimating gains, and b) the
effects of synergistic or antagonistic drug combinations that
have to be modeled with additional nonlinear pharmacody-
namic terms.

Here we propose a new algorithm that solves the combina-
tion therapy problem subject to the same design constraints



(sparsity of the drug combination, maximum dosage and ro-
bustness constraints) formulated as an SOCP while address-
ing the non linear dynamics of individual drugs and the non
linear dynamics of their combinations. In particular, through
the piecewise linearization of individual and combination
drug pharmacodynamics, in conjunction with a branch and
bound like algorithm for the effective search through these
linear pharmacodynamic modes, we reduce the combination
therapy problem to applying the SOCP formulation from [23]
to a set of pharmacodynamic modes.

The main contribution of this paper is an algorithm for the
systematic design of sparse, small gain feedback strategies
to stabilize the evolutionary dynamics of a generic disease
model and general nonlinear pharmacodynamics models,
which support synthesis of feedback strategies in light of
highly nonlinear drug interactions.

The article is structured as follows: In Section II, we recall
the extended quasispecies evolutionary dynamics model that
encodes replication, mutation and neutralization and summa-
rize relevant results in controller design of positive systems
and introduce the pharmacodynamics of a non competitive
additive drug binding model. In Section III, we present our
L1 combination therapy synthesis algorithm as well as an
algorithm designed to increase the scalability of the formu-
lation. Section IV illustrates our algorithm in the context
of an additive drug interaction example, that of the HIV
antibody therapy design problem previously studied in an
experimental setting [25], where the drugs act independently
and additively. Section V ends with concluding remarks and
directions for future work.

II. PRELIMINARIES

A. Notation

R+ denotes the set of nonnegative real numbers. The
inequality X > 0, (X ≥ 0) means that all elements of
the matrix or vector X are positive (nonnegative). X � 0
means that X is a symmetric and positive definite matrix.
The matrix A ∈ Rn×n is said to be Hurwitz if all eigenvalues
have negative real part. Finally, the matrix is said to be
Metzler if all off-diagonal elements are nonnegative. Define
1n to be the vector of all ones of dimension n. The induced
matrix norm for a matrix M ∈ Rr×m is ‖M‖p−ind =

supw∈Rm
|Mw|p
|w|p where |w|p = (|w1|p + + |wm|p)1/p.

Let G(s) = C(sI − A)−1B + D be a r × m matrix
transfer function. The induced norms of the corresponding
impulse response g(t) = CeAtB + Dδ(t) are ‖g‖p−ind =

supw
‖g∗w‖p
‖w‖p for w ∈ Lpm[0,∞), given that g∗w ∈ Lrp[0,∞)

is the convolution of g and w. Finally we refer to the ∞-
induced robust controller as the L1 controller as is customary
in the robust control literature.

B. Evolutionary dynamics model

The quasispecies model [26] was originally developed
to describe the dynamics of populations of self replicat-
ing macromolecules undergoing mutation and selection. We
choose this model for its relative simplicity and its ability to

capture the salient features of the evolutionary dynamics of
a simplified generic disease model. In [27] we incorporated
the effects of potential therapies into the basic quasi species
model, by defining a drug binding reaction, `+ ρ

KA−−→ ` · ρ
— drug ` binds to self replicating macromolecule ρ with
association rate KA, giving a neutralized complex ` · ρ. The
extended quasispecies model for n mutants and m drugs, is
written as:

ẋi = (riqii − di)xi +

n∑
k 6=i

riqikxk −Ψi(`)xi (1)

where xi ∈ R+ is the concentration of mutant i, ` = (`k) ∈
Rm+ is the drug concentration (assumed to remain at constant
concentrations throughout), ri and di are the replication and
degradation rates, respectively, of mutant i, and qik is the
probability that mutant k mutates to mutant i (note that qii
is the probability of no mutation occurring). The rates ri can
be viewed as the replication fitnesses of mutant i without
the effect of the drug. When `k = 0, ∀k ∈ {1, ...,m},
the quasispecies dynamics are unstable. Finally, the function
Ψi(`) represents the pharmacodynamics of individual drugs
`k and their combinations with respect to the i-th mutant
species, namely the sum of nonlinear drug effect functions
as represented by Hill equations. In the following section,
we present a brief justification for the Hill equation models
of these binding reactions.

C. Pharmacodynamic models

When combined, drugs can have additive, synergistic or
antagonistic effects that need to be explicitly accounted for
when designing combination therapies. When the presence
of one drug modulates the effect of another, the combined
drug effects are no longer additive, and in particular, the
phamacodynamics of the drug interaction now incorporate
additional terms that represent this interaction.

1) The Hill equation: The Hill equation has been used
in pharmacology to model nonlinear drug dose-responses,
for example the effects of drugs on cell viability or virus
neutralization. More generally it serves to quantify drug-
receptor relationships, the fraction of bound receptors ρ (e.g.
cell receptors, virus proteins) as a function of ligand `k (e.g.
drug, antibody) concentrations for the binding reaction

`k + ρ
KA−−→ `k · ρ. (2)

ψρ(`k) = [`k]
nk

[`k]
nk+K

nk
k (3)

where ψρ(`k) ∈ [0, 1] is the fraction of bound receptors,
`k ∈ R+ is the concentration of ligands, Kk = 1

KA
∈ R+ is

the dissociation constant associated with the binding reaction
(4), nk ∈ R+ is the Hill coefficient that represents the
degree of cooperativity, i.e. the degree to which binding of a
ligand molecule modulates the probability of another ligand
molecule binding.

We notice that the Hill function is a biological analog



to actuator saturation, in that there is a law of diminishing
returns in terms of the effect of ever increasing drug concen-
trations on the system. In fact, the Hill functions ψρ(`k) that
appear in HIV applications, for example, look approximately
linear for small to moderate `k, and nearly constant for large
`k – it is this observation that motivates our piecewise linear
approximation approach.

2) Non-competitive additive drug binding model: Under
this model, we consider the pharmacodynamics of non in-
teracting drugs that bind to different receptors, in which the
effect of each drug on the system is additive. Consider the
system of m drug binding reactions to different receptors on
a particular cell or virus x:

`1 + ρ1
K1←−− `1 · ρ1, ..., `m + ρm

Km←−− `m · ρm (4)

where `k is the drug k and ρk is a receptor. If these receptors
comprise different drug binding targets on a cell or virus x,
then we can describe the total effect of these independently
acting drugs `1, ..., `m on x as

Ψx(`) =
∑m
k=1 ψρk(`k). (5)

Remark 1: Although the remainder of the paper focusses
on this drug interaction model, we note that our approach
applies nearly verbatim to a synergistic/antagonistic drug
binding model – it suffices to use a suitable expression for
Ψx(`) to take these interactions into account. We do note
however that this may lead to a more involved piecewise
linear approximation procedure.

III. A SUB-OPTIMAL L1 COMBINATION THERAPY
CONTROLLER FOR NON LINEAR PHARMACODYNAMICS

In this section, we formulate the task of designing suitable
combination therapies as an optimal control problem. The
inherent non-linearities of the system make this a challenging
task – in [23], [27], we worked with a simplified problem
in which we assumed the Ψx(`) were linear functions –
in this paper we relax that assumption, and show that at
the expense of some additional modeling complexity, we
are able to reduce the problem to that considered in [23].
Our main result is based around the use of piecewise linear
approximations, and relating the robustness levels of the
approximate system to that of the true underlying system.

A. Problem formulation

The following state space representation of equation (1)
emphasizes the inherent feedback structure that arises from
drug binding reactions:

ẋ = (A−Ψ(`))x+ w
z = Cx

(6)

with (i) A ∈ Rn×n, with Aij = riqij ≥ 0 ∀ i 6= j and
Aii = riqii − di, that encodes the mutation and replication
dynamics; (ii) Ψ(`) ∈ Rn×n, a diagonal matrix, with diag-
onal elements Ψxi(`), that maps the effects of the therapies
` to the population dynamics; (iii) ` = (`k) ∈ Rm, a vector
of the concentrations of neutralizing macromolecules; (iv)

C = 1Tn ∈ R1×n; and (v) w ∈ Rn+ an arbitrary positive
disturbance.

We set the regulated output z = 1nx to be the total virus
population, so as to ensure that the resulting treatment plan is
one that robustly drives the total mutant population to zero.

Remark 2: A is a Metzler matrix with off-diagonal entries
that are several orders of magnitude smaller than the diagonal
entries. This is due to the biological fact that mutation
rates range from 10−5 − 10−8 mutations per base pair
per replication cycle for reverse transcriptase [28] to DNA
replication [29].

Letting G denote the closed loop system (6), the control
task then becomes to reverse engineer neutralizing macro-
molecule concentrations ` by finding a ’‘controller” Ψ(`)
that leads to a stable G satisfying ||G||∞−ind < γ, for some
robustness level γ > 0.

B. Piecewise linear mode approximations and mode reduc-
tion

In the following, we assume that each (Ψ(`))ii = Ψxi
(`)

has the form given by (5). To take into account non-
linear pharmacodynamics, we propose a piecewise linear
approximation algorithm and a mode reduction algorithm for
problems where there is a large number of non interacting
or synergistic drug combinations.

We assume that the pharmacodynamics for every individ-
ual drug and combination are defined over the same drug
concentration domain D ∈ R. Let P = {p1, ..., pk} be a
partitioning of this domain into k intervals.

Definition 1: A pharmacodynamic mode ω =
(ω1, ..., ωm) is an m-tuple in Pm. The total number
of pharmacodynamic modes is |P|m where m is the number
of drugs under consideration. For ` ∈ Rm, we define
` ∈ ω ⇐⇒ `i ∈ ωi,∀i = {1, 2, ...,m}.

We let ψiω : Rm → R be the affine approximation of the
pharmacodynamics for each mutant i for ` ∈ ω, i.e. the sum
of the individual and combination drug effects on mutant
i while operating within mode ω. We can then construct a
linear approximation to Ψ(`) via an appropriately defined
block diagonal matrix Ψω , constructed from the ψiω (c.f.
[23]), and write Ψ(`) = ΨωLω , where Lω = (I ⊗ `ω) ∈
Rmn×n+ is the block diagonal matrix, with identical block
diagonal elements given by the drug concentrations ` ∈ ω.
The resulting dynamics, for a fixed concentration ` ∈ ω, are
then described by the transfer function

G`ω (s) = C(sI − (A−ΨωLω)−1B +D. (7)

We consider the problem of finding a suitably sparse
therapy combination that achieves a certain closed loop
performance level γ. As such, our initial goal becomes to
reduce the search space to the set of sparse modes that
achieve the desired level of robustness, where a sparse mode
ω is one that allows at least one drug concentration to be
zero, in other words, 0 ∈ ωi for at least one ωi ∈ ω.

In order to do so, we require two lemmas. The first
provides sufficient conditions on the linear approximation
terms ψiw that guarantee that the robustness of the piecewise



linear approximation is an upper bound on that of the
true system. The second is the simple observation that for
non-interacting or synergistic additive drug interactions, the
robustness of the closed loop dynamics increases as drug
concentrations are uniformly increased (this statement will be
made precise). This result allows us to subsequently develop
a branch and bound like method that significantly reduces
the search space of the algorithm.

We begin with a result on the input-output performance
of a positive system, taken from [24].

Lemma 1: Let G(s) = C(sI −A)−1B +D be a positive
system. Then ‖G‖∞−ind ≤ γ if and only if there exits x ≥ 0
such that

Ax+B1n < 0
Cx ≤ γ

(8)

Lemma 2: Let Ψ(`) be the non-linear pharmacodynamics
function, ψ(`) the vector of its diagonal elements, and denote
by Ψω(`) its piecewise linear approximation within mode ω,
and by ψω(`) the vector of its diagonal elements. If for every
mode ω we have ψω(`) ≤ ψ(`)∀` ∈ ω then the L1 norm γ
of the piecewise linear approximation (7) is an upper bound
on that of the true system (6).

Proof: Note that for a fixed `, both the full and
piecewise linear approximation systems are linear in x.
Therefore, by Lemma 1, the L1 norm of (7) is upper bounded
by γ if and only if there exists an x > 0 such that

(A−Ψω(`))x+ 1n < 0
1Tnx ≤ γ

(9)

Thus it suffices to show that this same x yields (A−Ψ(`))x+
1n ≤ 0 and the desired conclusion follows immediately. To
that end, rewrite the first inequality of (9) as

(A−Ψ(`))x+ 1n < (Ψω(`)−Ψ(`))x, (10)

and notice that the right hand side is less than or equal to 0
by the assumptions of the lemma.

This lemma essentially states that if our piecewise linear
approximation is conservative, then the norm of the approx-
imate system serves as a certificate for the norm of the true
system.

Next we formalize the observation that increasing the
concentrations of non or synergistically interacting therapies
present in the system will improve robustness.

Lemma 3: Let `1 and `2 be therapy combinations such
that `1 ≥ `2. Then if the piecewise linear approximation
Ψω(`) is non-decreasing, ||G1||∞−ind ≤ ||G2||∞−ind, where

Gi = C(sI − (A−Ψω(`i))−1I.

Proof: By assumption, the piecewise linear function
Ψω(`) is non-decreasing. Thus if `1 ≥ `2, then Ψω(`1) ≥
Ψω(`2). Let γi = ||Gi||∞−ind. By Lemma 1, γi is the
solution to the following optimization:

minimize
γ,x≥0

γ

subject to
(A−Ψω(`))x+ 1 < 0
Cx ≤ γ

(11)

Let γ2 and x be the optimal solutions of the above program
for i = 2. Then we have that

(A−Ψω(`1))x+ 1 ≤ (A−Ψω(`2))x+ 1 ≤ 0. (12)

Hence (γ2, x) is a feasible solution for optimization (11)
with i = 1, implying that γ1 ≤ γ2.

Thus we see that by constraining the piecewise linear
approximations to be under approximations of the effects
of the drugs, we are able to bound the performance of the
true system.

Remark 3: We note that these results typically will not
hold for antagonistic drug interactions – however, many
settings in which such models are required (such as cancer
therapy design) do not have a large set of therapies or mu-
tants, thus mitigating the computational cost of the sequential
search across modes.

We exploit this result to reduce the modes that need to
be searched over – in particular, we use the partial order
implied by the previous two results to upper and lower bound
the uniform concentration treatments required to achieve a
prescribed performance level γ. We also exploit the fact that
we are searching for sparse treatment strategies to further
eliminate modes.

This approach is formalized in the following algorithm.
Let `ωmax

∈ Rm, be the maximum possible drug concentra-
tions.

Algorithm 1 Sparse mode reduction algorithm
Set `ωi

← `ωmax
, γ > 0.

while ¬(`ωi == 0n ∧ ε) :
if ||G`ωi

|| < γ,
S = S ∪ ωi

else
U = U ∪ ωi.

Set `ωi+1
=

`ωi

2 .
Set ε = (ωi ∈ S || ωi ∈ U)

The sparse mode reduction algorithm will generate a set
of modes that are guaranteed to be stable and achieve a
desired robustness level γ, and ”sparse”, i.e. allowing modes
such that at least one drug concentration is allowed to be
zero, significantly reducing the number of the modes over
which to apply the combination therapy algorithm. For the
HIV example in Section IV, to synthesize controllers with
robustness level γ = 14, we start with |P|m = 10000 possible
modes to search over, and reduce this number to 397 sparse
modes with robustness level γ = 14, via Algorithm 1.



Algorithm 2 Scalable Combination Therapy
1) Set `0 = `ωmax .
2) Check if P1`0,ω(x, s) is feasible. If feasible

Set (x′, s′) = P1`0,ω(x, s).
Set (`′) = P2(x′,0,0,ω)(`).

else, move to next mode and return to Step 1.
3) Find (λ′1, λ

′
2, `ω) for mode ω:

∀(λ1, λ2) ∈ Λ1 × Λ2,Λ1,Λ2 ∈ Rk+,
Set s = 1.
while ¬(s′ == s) :

Set s = s′.
Set (x′, s′) = P1`′,ω(x, s).
Set (`′) = P2(x′,λ1,λ2,ω)(`).

C. A suboptimal combination therapy algorithm

As discussed in [23], [27] there are no known convex
reformulations for the robust combination therapy problem
over an infinite horizon due to the additional structure on L.
As such we use the iterative approach developed in [23], as
formalized in Algorithm 2, based on the convex programs
(13) and (14), to find a stabilizing controller, given a desired
robustness level γ. For notation, let Y ′ = PZ′(x, s) denote
an optimization problem P in which we optimize over x and
s leaving Z ′ fixed and with solution Y ′. These optimization
programs, taken from [24], are a synthesis variant of the
conditions stated in Lemma 1.
Program 1. P1`,ω(x, s) :

minimize
x∈Rn

+,s
s

subject to
Aωx+ ΨωLx+ 1 ≤ s
L = I ⊗ `, ` ∈ ω
1Tnx ≤ γ
s < 0, x ≥ 0

(13)

Program 2. P2(x,λ1,λ2,ω)(`)

minimize
`∈Rm

+

λ1‖`‖1 + λ2‖`‖2

subject to
Aωx+ ΨωLx+ 1 < 0
L = I ⊗ `, ` ∈ ω
1Tnx ≤ γ

(14)

Remark 4: Note the introduction of a slack variable s into
Program 1, to help prevent immediate convergence to a local
minimum. Minimizing s has the effect of maximizing the
slack in the first constraint, allowing for more freedom in
the design of the concentration vector ` in Program 2.

IV. APPLICATIONS TO ADDITIVE PHARMACODYNAMIC
BINDING MODELS

A. Additive drug effects: HIV and antibody therapy

Our results provide a principled approach to the design
of antibody treatments for chronic infection with human

immunodeficiency virus-1 (HIV-1) in light of the nonlinear
pharmacodynamics and saturation concerns associated with
antibody neutralization of HIV-1. We illustrate this with an
example motivated by experimental results of evolutionary
dynamics of HIV-1 in the presence of antibody therapy
obtained in [25].

A relatively recent discovery is that a minority of HIV-
infected individuals can produce broadly neutralizing anti-
bodies (bNAbs), that is, antibodies that inhibit infection by
many strains of HIV [30]. These have been shown to inhibit
infection by a broad range of viral isolates in vitro but also
protect non-human primates against infection [30],[31], [32].
Recent experimental results conducted in the Nussenzweig
lab at Rockefeller University have demonstrated that the use
of single antibody treatments can exert selective pressure on
the virus, but escape mutants due to a single point mutation
can emerge within a short period of time [25]. Although
antibody monotherapy did not prove effective, it was shown
that equal, high concentrations of an antibody pentamix
effectively control HIV infection and suppress viral load to
levels below detection.

The goal of this example is to demonstrate how our
proposed algorithm offers a principled way to design com-
bination antibody therapies that control HIV infection and
prevent evolution of any set of known resistant mutants given
the nonlinear pharmacodynamics of antibody neutralization
of HIV-1. In a realistic setting, the ability to do this relies
on the knowledge of what resistant viruses may be selected
for with single therapies, and knowledge of antibody phar-
macodynamics. This algorithm would be most effective in
conjunction with single antibody selection experiments and
knowledge of antibody Hill function properties.

1) Model parameters: We consider four potential antibod-
ies to use in combination PG16, 45-46G54W, PGT128 and
10-1074 on an evolutionary dynamics model of twenty one
mutants.

The Hill function associated with the fitness of a virus
with respect to neutralization by an antibody is described
in equation (3). We used Hill function parameters that were
experimentally derived in [33] for antibodies 45-46G54W,
PGT128 and PG16 and approximated the Hill parameters
associated with antibody 10-1074. We consider a set of 35
mutants that evolved from antibody monotherapy experi-
ments in [25]. Their corresponding half maximal inhibitory
antibody concentration (IC50) in µg/ml, is specified in the
Supplementary Figure 8 of [25]. We choose replication rates
to be 0.5 (ml·day)−1 for all mutants. We justify this selection
by noting that escape mutants grew to be dominant mutants
during selection experiments and assume that replication rate
variability due to mutations are negligible. The mutation
rate for HIV reverse transcriptase is u = 3 × 10−5 mu-
tations/nucleotide base pair/replication cycle [28], and the
HIV replication cycle is approximately 2.6 days [34]. We
approximate the rate of mutation for a particular amino
acid mutation at a particular location to be 1

na
u(1 − u)k =

1.443 × 10−6 per replication cycle, where k ≈ 3000 is the
size of the genome in residues and na = 19 is the number



of amino acids that can be mutated to. Our model supports
forward point mutations and two point mutations. We do not
consider back mutations, as the probability of mutation is
negligible. Units of concentration in number of viruses/ml
or number of antibodies/ml are used for states, and time is
measured in days. The standard volume is 1 ml.

B. L1 controller synthesis

We performed ten piecewise linear approximations on each
of the Hill functions associated to each of the twenty one
mutants and each of the four antibodies we considered as
possible candidate therapies. This generated 10000 possible
pharmacodynamic modes of which we found 397 to be sparse
and stable by Algorithm 1. Figure 1 shows an example
of a conservative piecewise linear approximation to a Hill
function associated with a virus mutant antibody pairs.

We synthesized a family of robustly stabilizing controllers
using our algorithms for a range of desired robustness levels
and found that two different trimixes were predominant -
one more frequent combination comprised of (45-46G54W,
PGT128,10-1074) antibodies was present for smaller robust-
ness levels and another combination, (PG16, 45-46G54W,
PGT128) appeared in addition to the first one when the
desired robustness was allowed to be larger as shown in
Figure 1. According to [25], the mean IC50 for virus mutants
is greatest for the PG16 mono therapy than any other single
antibody.

In [25], a different antibody trimix containing PG16,
(3BC176, PG16, 45-46G54W) was suggested and experi-
mentally shown to produce a decline in the initial viral load.
However, a majority of mice in the experimental study had
a viral rebound to the trimix pre-treatment levels, suggesting
that in these cases, the virus had evolved mutations that were
resistant to the trimix treatment. Further study showed that
the evolved mutants had mutations found in the PG16 and
45-46G54W monotherapy groups. This could be suggestive
that the combination of (PG16 and 45-46G54W) with another
antibody although stabilizing, may not be robust enough to
the type of perturbations witnessed in a biological setting.
In Figure 2, we see that although the (PG16,45-46G54W,
PGT128) (red) and (45-46G54W, PGT128,10-1074) (green)
and combinations were synthesized to have the same robust-
ness guarantee, the combination containing PG16 and 45-
46G54W is less robust to perturbations.

These simulations demonstrate that although many stabi-
lizing solutions to the combination therapy problem exist,
the best ones are found when design parameters such as a
sparsity, limits on the magnitude of gains, and robustness
guarantees are simultaneously considered. Experimentally
searching for these combinations is infeasible as the number
of potential therapies and possible concentrations to consider
is experimentally intractable. We propose to guide these ex-
perimental activities with our ability to design and synthesize
combination therapy controllers. As such, one could generate
a family of controllers based on “design specifications”
tailored not only the (viral or cellular) composition of the
disease, but to explore tradeoffs between number of therapies
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perturbations of 0.13% in the dynamics for 30 different simulations for
(left) a stabilizing closed loop controller comprised of antibody trimixes
(0,0.96,2 ,1) (blue) , (0,1,0.177,2) (green) and (2,0.35,0.96,0) (red) µg/ml
of (PG16,4546-G54W, PGT128, 10-1074) combinations synthesized using
our algorithm and (right) for the same antibody trimixes subject to pertur-
bations of 0.15% in the dynamics.

used (sparsity), therapy concentrations (magnitude of the
gain) and ability to support pharmacokinetic fluctuations
(robustness to perturbations) and subsequently verify these
experimentally.

V. CONCLUSION AND FUTURE WORK

We proposed an iterative algorithm and mode reduction
scheme for the systematic design of sparse, small gain
feedback strategies that stabilize the evolutionary dynamics
of a generic disease model, subject to nonlinear pharmaco-
dynamics. In future work, we plan to explore a principled
integration of our methods with recent results on the robust
L1 stability of positive systems [35]. In particular, we
hope to explicitly account for unmodeled dynamics due to
pharmacokinetic perturbations.
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