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Abstract— We propose a general algorithm for the systematic
design of feedback strategies to stabilize the evolutionary
dynamics of a generic disease model using an H∞ approach. We
show that designing therapy concentrations can be cast as an
H∞ state feedack synthesis problem, where the feedback gain
is constrained to not only be strictly diagonal, but also that
its diagonal elements satisfy an overdetermined set of linear
equations. Leveraging recent results in positive systems, we
develop an algorithm that always yields a stabilizing controller.

I. INTRODUCTION AND MOTIVATION

A challenge inherent to the treatment of certain infectious
and non-infectious diseases, such as HIV or cancer, is the
risk that the pathogen or tumor will evolve away and become
resistant to treatment methods that comprise the standard of
care. Especially vulnerable to this phenomenon are treatment
methods that involve exposing the disease population (such
as viruses or cancer cells) to single therapies for an extended
period of time. In particular, this establishes an environment
in which the occurrence of mildly drug resistant pathogens
or tumor cells can develop a huge evolutionary advantage
over the pathogens/tumor cells for which the monotherapy
is targeted, leading to so called ”treatment-escape.”

This phenomenon has received considerable attention in
the biology and biomedical communities. For example, the
human immunodeficiency virus (HIV) has been shown to
escape from anti-HIV monotherapies, whether they be a
small molecule drug or an antibody. In cancer treatment,
acquired tumor resistance arises with targeted drugs and
cytotoxic chemotherapy, limiting their utility and requiring
design of alternative drugs for resistant tumors. One of the
solutions that has been proposed [1], [2] is the rational design
of combination therapy, much in the spirit of highly active
antiretroviral therapy (HAART), the current standard of care
for the treatment of HIV.

Recent results by Rosenbloom, et al. [3] have been more
quantitative in nature, modeling the evolutionary dynamics
of HIV and showing through simulations how the effect of
antiretroviral dynamics can determine HIV evolution and
therapy outcome. The Michor lab [4] recently showed the
effects of different erlotinib dosing strategies in the presence
of pharmacokinetic fluctuations on the evolution of resistance
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of non small cell lung cancer through simulations of a
stochastic evolutionary dynamics model.

Although these methods have provided some insight into
the problem, the challenge of designing treatment protocols
that prevent escape is really one best addressed by control
theoretic methods. Recent results in this spirit, especially
targeted at cancer therapy, apply methods from optimal and
receding horizon control [5], [6], as well as gain scheduling
techniques [7], to synthesize treatment protocols that are
robust to parameter uncertainty, an inherent issue in all
biological systems.

As of yet, however, no methods exist for a principled
design of targeted combination therapy concentrations that
explicitly account for the inherent evolutionary dynamics of
a system. The main contribution of this paper is a general
algorithm for the systematic design of feedback strategies
to stabilize the evolutionary dynamics of a generic disease
model using an H∞ approach.

In particular, we observe that designing antibody con-
centrations can be cast as an H∞ state feedback synthesis
problem, where the feedback gain is constrained to not only
be block diagonal, but also that each block diagonal element
be identical. Leveraging recent results in positive systems
[8],[9], we develop an algorithm that always yields a sub-
optimal, but stabilizing controller.

Our algorithm has applications in combination targeted
cancer therapy [10], antibody therapy of cancer [11], an-
tibody and/or drug therapy of HIV [12], as well as many
other problems in which mutation, selection, and escape are
dominant features of the dynamics.

The structure of the paper is as follows. In Section
II, we fix notation, introduce a simplified generic evolu-
tionary dynamics model that encodes replication, mutation
and neutralization, and summarize relevant results from the
positive systems literature. Section III presents our combi-
nation therapy synthesis algorithm. Section IV illustrates the
effectiveness of our algorithm on an HIV antibody therapy
design problem, and Section V ends with concluding remarks
and directions for future work.

II. PRELIMINARIES

A. Notation

R+ denotes the set of nonnegative real numbers. The
inequality X > 0, (X ≥ 0) means that all elements of the
matrix (or vector) X are positive (nonnegative). X � 0 means
that X is a symmetric and positive definite matrix. A matrix
A ∈ Rn×n is said to be Hurwitz if all eigenvalues have



negative real part. Finally, the matrix is said to be Metzler if
all off-diagonal elements are nonnegative.

B. Problem formulation

The quasispecies model [13] was formulated to describe
the dynamics of populations of self replicating macro-
molecules undergoing mutation and selection, and to ana-
lyze how steady state population distributions change with
increases in mutation rates. We choose this model for both
its relative simplicity and for its ability to capture the
salient features of the evolutionary dynamics of a simplified
generic disease model. To incorporate the effects of potential
therapies into the basic quasispecies model, we define a
generic binding neutralization reaction, `+ x −−→KA

` · x –
neutralizing macromolecule ` binds to self replicating macro-
molecule x with association rate KA, giving a neutralized
complex ` · x. The quasispecies model is written as

ẋi = (riqii − di)xi +

n∑
k 6=i

riqkixk −
m∑
k=1

ψki`kxi (1)

where xi ∈ Rn+ is the concentration of mutant i, `k ∈ R+ is
the concentration of neutralizing macromolecules (assumed
to remain at constant concentrations throughout), ri and di
are the replication and degradation rates, respectively, of
mutant i, and qki is the probability that mutant i mutates
to mutant k. Finally, ψki = f(Kki) is a function of the
association constant Kki for each neutralization reaction
representing the rate at which a neutralizing macromolecule
`k neutralizes mutant i. The rates ri and ψki can be viewed
as replication and neutralization fitnesses of mutant i.

The following state space representation of equation (1)
outlines the inherent feedback of the system induced by these
neutralization reactions:

ẋ = (A−ΨL)x+ w
z = ΨLx

(2)

with (i) A ∈ Rn×n, with Aij = riqij ≥ 0 ∀ i 6= j and
Aii = riqii − di, that encodes the replication and mutation
dynamics; (ii) Ψ, Ψ ∈ Rn×nm block diagonal matrices that
describe the fitness of n mutants with respect to m different
neutralizing macromolecules, with diagonal elements Ψi =
(ψik) ∈ R1×m

+ and Ψi = ( 1
ψik

) ∈ R1×m
+ ; (iii) L = (I⊗ `) ∈

Rmn×n+ , with ` = (`k) ∈ Rm, a block diagonal matrix that
encodes the concentrations of neutralizing macromolecules
for all n mutants; and (iv) w ∈ Rn+ an arbitrary positive
disturbance. Note that ΨL,ΨL ∈ Rn×n+ are by construction
strictly diagonal matrices.

We set the regulated output z = ΨLx as a proxy to min-
imizing the concentration of neutralizing macromolecules
needed to robustly stabilize the system. The introduction of
the weighting matrix Ψ is such that control components cor-
responding to more neutralizing antibodies are less penalized
than those of less neutralizing ones.

Remark 1: A > 0 and the off diagonal entries are several
orders of magnitude smaller than the diagonal entries. This
is due to the biological fact that mutation rates range from

10−5 − 10−9 mutations per base pair per replication cycle
for reverse transcriptase to DNA replication.

Letting G denote the closed loop system (2), the control
task then becomes to reverse engineer neutralizing macro-
molecule concentrations by finding a controller K = (I⊗ `)
that leads to a stable G satisfying ||G||∞ < γ, for some
robustness level γ > 0.

C. The bounded real lemma for internally positive systems

Recent results by Tanaka and Langbort [8] and Rantzer [9]
on the synthesis of H∞ controllers for positive systems show
that the design of structured static state feedback controllers
for internally positive systems can be reformulated as a
convex problem. In this section we provide a brief survey
of the relevant definitions and results from [8]:

Definition 1: The LTI system

ẋ = Ax+Bw
z = Cx+Dw

(3)

with A ∈ Rn×n, B ∈ Rn×q , C ∈ Rp×n and D ∈ Rp×q is
called internally positive if for every x0 ∈ Rn+ and all inputs
such that w(t) ∈ Rq+ for all t ≥ 0, the state vector x(t)
belongs to Rn+ and the output vector z(t) belongs to Rp+ for
all t ≥ 0.

The internal positivity of a system is easily determined by
a simple condition on its system matrices:

Lemma 1: System (3) is internally positive if and only if
1) A is Metzler, and
2) B,C,D ≥ 0, i.e. matrices B, C, and D are entry-wise

non-negative.
In light of this result, it is easy to show that system (2) is

internally positive:
Lemma 2: System (2) is internally positive.

Proof: Condition 2) of Lemma 1 is easily seen to be
satisfied by noting that in (2), B = I , C = ΨL and D = 0.
To see that A−ΨL is Metzler, it suffices to notice that since
ΨL is strictly diagonal, it cannot affect the Metzler property
of A.

Systems that are internally positive enjoy the significant
advantage that the storage function matrix used in the
bounded real lemma to characterize the H∞ norm of a
system via a semi-definite program (SDP), can be taken
without loss to be diagonal, as outlined in the following
theorem, slightly modifed from [8].

Theorem 1: Let the system (3) be internally positive with
(A,B) stabilizable and (C,A) detectable. Let the corre-
sponding transfer function be given by G(s) := C(sI −
A)−1B +D. Then the following statements are equivalent:

1) ‖G‖∞ < γ and A is Hurwitz;
2) There exists a diagonal matrix X > 0 such that[

ATX +XA+ CTC XB + CTD
BTX +DTC DTD − γ2I

]
≺ 0. (4)

The fact that X can be restricted to be diagonal is very
useful in synthesizing structured feedback controllers, when
this structure is defined by sparsity in the feedback gain.
Our setting, however, requires not only sparsity, but a type



of algebraic consistency, as K = I ⊗ ` implies that each
block diagonal element of K must be equal. Unfortunately,
there is no known way of enforcing this additional coupling
in a convex manner.

III. A SUB-OPTIMAL H∞ COMBINATION THERAPY
CONTROLLER

In this section, we deal with the aforementioned non-
convexity of the optimal control problem by formulating an
iterative algorithm for finding effective antibody concentra-
tions, exploiting the internal positivity of the system to show
that it always yields a stabilizing controller.

A. Stabilizing controller

We begin with a simple algorithm for the synthesis of
stabilizing controller for the nominal system, which admits a
particularly simple formulation in light of the Metzler nature
of A.

Lemma 3: There exists ε > 0 such that the solution to
the convex program:

minimize `∈Rm
+
||`||∞

subject to
Ad + εI −ΨL ≺ 0
L = I ⊗ `

(5)

is a stabilizing controller for system (2), where Ad is a
diagonal matrix comprised of the diagonal elements of A.

Proof: Rewrite A = Ad + M where Ad is diagonal
and M = {mij} ∈ Rn×n, mij = 0 for i = j and
mij > 0 for i 6= j. By the Perron Frobenius theorem,
there exists r > 0 such that the spectral radius ρ(M) =
r ≤ maxi

∑
mij . Let ε = maxi

∑
mij and rewrite M =

εI − (εI −M). We note that −(εI −M) ≺ 0. The closed
loop dynamics are then given by A−ΨL = Ad+ εI− (εI−
M)−ΨL ≺ Ad+εI−ΨL ≺ 0, yielding the desired stability.

Remark 2: The stabilization problem can be solved inde-
pendently of a storage function because it can be reduced to
satisfying element wise inequalities.

B. A Suboptimal H∞ combination therapy controller

Observe that through a straightforward application of (4)
to system (2), the antibody concentrations ` yielding an
optimal H∞ closed loop norm can be found by solving the
following non-convex program:

minimize γ
subject to[
ATclX +XAcl + (ΨL)T (ΨL) X

X −γ2I

]
≺ 0

Acl = (A−ΨL)
L = I ⊗ `
X � 0, X diagonal

(6)

Applying a Schur Complement to ATclX + XAcl +
(ΨL)T (ΨL) yields the more amenable form

minimize γ
subject to ATclX +XAcl X (ΨL)T

X −γI 0
ΨL 0 −γI

 ≺ 0

Acl = (A−ΨL)
L = I ⊗ `
X � 0, X diagonal

(7)

Remark 3: We can impose an additional constraint limit-
ing the concentrations of candidate therapies. This is neces-
sary with certain drugs that have maximum tolerated doses
dictated by clinical trials.

Thus the only non-convexity remaining are the product
terms between the storage function matrix X and the con-
troller gain L in ATclX +XAcl. As mentioned earlier, there
are no known convex reformulations of this problem due
to the additional structure on L. As such, we suggest the
following iterative algorithm, based on the convex programs
(5) and (7), to find a stabilizing controller.

For ease of notation, let PX′(`, γ) denote that we solve
(7) with X = X ′ fixed, and that we optimize over ` and γ.
Similarly, let P`′(X, γ) denote that we solve (7) with ` = `′

fixed, and that we optimize over X and γ. Additionally, let
(Z, γ) = PZ′(Z, γ) denote the solutions to the respective
programs, for Z,Z ′ ∈ {X, `}.

We are now in a position to present our algorithm:

Algorithm 1 Combination Therapy
1) Set ε > 0
2) Solve (5) to obtain an initial stabilizing controller `′.
3) while γ′ − γ > ε :

i) Set (X ′, γ) = P`′(X, γ).
ii) Set (`′, γ) = PX′(`, γ).

iii) Set γ′ = γ.

Proposition 1: Algorithm 1 always converges to a feasible
γ and generates a stabilizing controller for (2).
Proof: By Lemma 3, an initial stabilizing controller can
always be found, and thus the algorithm can always be
initialized. The sequence of γs then defined by the iterative
process in Algorithm 1 is non increasing by construction,
and bounded below by 0, thus implying convergence. We
therefore have that our algorithm always converges to a local
minimum value of γ, and yields a set of gains which, by the
bounded real lemma, robustly stabilize system (2).

IV. HIV/ANTIBODY THERAPY APPLICATION

Our results provide a principled approach to the design
of antibody treatments for chronic infection with human
immunodeficiency virus-1 (HIV-1). We illustrate this with an
example motivated by experimental results of evolutionary
dynamics of HIV-1 in the presence of antibody therapy
obtained in [14].



A relatively recent discovery is that a minority of HIV-
infected individuals can produce broadly neutralizing anti-
bodies (bNAbs), that is, antibodies that inhibit infection by
many strains of HIV [12]. These have been shown to inhibit
infection by a broad range of viral isolates in vitro but also
protect non-human primates against infection [12],[15], [16].
Recent experimental results conducted by Florian Klein, et
al. in the Nusswenzeig lab at Rockefeller University have
demonstrated that the use of single antibody treatments can
exert selective pressure on the virus, but escape mutants due
to a single point mutation can emerge within a short period
of time [14]. Although antibody monotherapy did not prove
effective, it was shown that equal, high concentrations of
an antibody pentamix effectively control HIV infection and
suppress viral load to levels below detection. The goal of this
example is to demonstrate how our proposed algorithm offers
a principled way to design combination antibody therapies
that control HIV infection and prevent evolution of any set of
known resistant mutants. In a realistic setting, the ability to
do this relies on the knowledge of what resistant viruses may
be selected for with single therapies, and so this algorithm
would be most effective in conjunction with single antibody
selection experiments.

1) Model parameters: We consider a system of eigh-
teen HIV mutants with five potential antibodies to use in
combination. Figure 2 lists the mutants considered in this
example with their corresponding half maximal inhibitory
antibody concentration (IC50) in µg/ml, as measured by
the Nussenzweig lab in [14]. Antibodies 3BC176, PG16, 45-
46G54W, PGT128 and 10-1074 are potential combination
therapy candidates.

Although virus replication rates can vary considerably
depending on the nature of the mutations a virus may
undergo, we choose replication rates to be 0.5 (ml · day)−1

for all mutants. We justify this selection by noting that
escape mutants grew to be dominant mutants during selection
experiments and assume that replication rate variability due
to mutations were negligible.

The fitness function associated with the neutralization of a
virus i with respect to an antibody j is a Hill function ψij =

`nj
`nj +K

n
ij

where n is the Hill coefficient, `j is the concentration

of a given antibody j, and Kij = kon
koff

=
[xi`j ]
[xi][`j ]

is the
association constant for the virus/antibody binding reaction
`j + xi −−→kon `j · xi, and kon and koff are the on and off
reaction rate constants. Note that the association constant
represents the fraction bound of antibody/virus complexes in
solution and that Kij =

3·IC50ij
3ri+ln(2)−IC50ij

, is found by solving
Equation 1 for one virus/antibody pair for the duration
[t0, tf ] = [0, 3]. We simplify the Hill function by setting
the Hill coefficient n = 1, as there is evidence that that
antibodies do not bind cooperatively. Our algorithm yields
antibody concentrations near zero and this yields the linear
approximation ψij = 1

Kij
`ij . In addition, the antibodies we

consider in our example do not target the same epitope, in
other words, do not bind competitively to the same sites on
the virus, thereby reducing any coupling between antibody
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Fig. 1. (Left) Sum of virus populations over time for the nominal closed
loop controller (solid red) and for random time invariant perturbations in
the dynamics with the same controller (dashed magenta). (Right) Sum of
virus populations over time for the robust closed loop controller (solid red)
and for random time invariant perturbations in the dynamics with the same
controller (dashed magenta).

concentrations.
The mutation rate for HIV reverse transcriptase is u =

3 × 10−5 mutations/nucleotide base pair/replication cycle,
and the HIV replication cycle is approximately 2.6 days.
We approximate the rate of mutation for a particular amino
acid mutation at a particular location to be 1

na
u(1 − u)k =

1.443 × 10−6 per replication cycle, where k ≈ 3000 is the
size of the genome in residues and na = 19 is the number
of amino acids that can be mutated to. We do not consider
back mutations, as the probability of mutation is negligible.

Units of concentration in number of viruses/ml or number
of antibodies/ml are used for states, and time is measured in
days. The standard volume is 1 ml.

2) H∞ controller: We synthesized a nominal
stabilizing controller according to (5) and
found stabilizing antibody concentrations Ls =
{0.0125, 0.0125, 0.0125, 0.0125, 0.0125} in µg/ml for
antibodies {3BC176, PG16, 45-46G54W, PGT128, 10-
1074}. Using Algorithm 1 with antibody constraints L ≤ 1
µg/ml, we synthesized a robust controller yielding antibody
concentrations of Lr = {1, 0, 0.003, 0.0031, 0.0026}. The
closed loop H∞ norm of the stabilizing controller was found
to be γs = 0.4 whereas that of our robust controller had a
norm of γr = 0.016. The simulations in Figure 1 illustrate
the need for robustness in the face of model uncertainty
– the robust controller remains stabilizing in the presence
of small additive model uncertainty in the mutation and
replication parameters of the system, whereas the nominal
stable controller fails to do so. Note that Algorithm 1
converged to this robust controller after nine iterations in
38.514 s.

V. CONCLUSION AND FUTURE WORK

We proposed an iterative algorithm for the systematic
design of feedback strategies to stabilize the evolutionary
dynamics of a generic disease model using an H∞ approach.
In particular, we reduced the problem to a non-convex H∞
state feedack synthesis problem, where the feedback gain is
constrained to not only be block diagonal, but also satisfy
an additional algebraic constraint, namely that each block
diagonal element be equal. Leveraging recent results in
positive systems [8], we showed that our iterative procedure



always yields a stabilizing controller. Additionally, through
an HIV inspired simulation example, we show that our
method also results in a controller with useful robustness
properties.

There are many promising avenues for future work. One
is expanding the evolutionary dynamics model to include
aspects that are more closely related to an animal model, such
as pharmacokinetics and immune system dynamics. This will
allow for the control design procedure even more applicable
to personalized treatment protocol design. Another yet is the
support of larger scale systems through a linear programming
formulation of the distributed control problem for positive
systems [9].
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Mutation 3BC176 PG16 45-46G54W PGT128 10-1074
IC50 µg/ml IC50 µg/ml IC50 µg/ml IC50 µg/ml IC50 µg/ml

WT 0.319 0.612 0.024 0.169 0.312
G471R 0.159 0.154 0.008 0.02 0.091
N160K 0.145 50 0.007 0.086 0.155
T162N 0.154 50 0.013 0.166 0.175
N279H 0.209 0.294 50 0.064 0.177
N280Y 0.276 0.145 50 0.031 0.126
N332K 0.232 0.988 0.017 50 50
N332Y 0.269 0.632 0.01 50 13.596
S334N 0.218 0.615 0.02 50 7.308
Y61H 0.243 0.285 0.015 0.098 0.26
E102K 0.173 0.341 0.023 0.11 0.207
N295S 0.347 0.5 0.017 0.145 0.159
I311M 0.23 2.67 0.013 0.248 0.253
S365L 0.26 0.273 0.009 0.045 0.153
G366E 0.187 0.167 0.001 0.021 0.074
I371M 0.2 0.303 0.013 0.064 0.164
N413K 0.188 0.557 0.014 0.032 0.109
E429K 0.146 0.503 0.017 0.082 0.167

Fig. 2. IC50 values for the indicated antibodies for mutant viruses found in continuous antibody monotherapy experiments conducted by the Nussenzweig
lab at Rockefeller University [14]. WT signifies the the ’wild type’ YU2 laboratory strain of clade B replication competent HIV. Mutations are labeled
by the amino acid occurring in the WT strain, followed by the location of the amino acid and the amino acid mutation. Each mutation was found by
doing a selection experiment: a humanized mouse was infected with monoclonal YU2 strain and given continuous mono therapy of either 3BC176, PG16,
45-46G54W, PGT128 or 10-1074. Mutant resistant viruses emerged as a result of these selection experiments and IC50s values were measured.


