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Abstract— It has been shown that H2 decentralized control
subject to delay constraints induced by a strongly connected
communication graph can be solved by decomposing the con-
troller into a centralized but delayed component, and a decen-
tralized finite impulse response component, the latter of which
can be solved for via a linearly constrained quadratic program.
In this paper, we propose an atomic norm minimization based
variant of this quadratic program that can be used for the
co-design of a communication graph that is well suited for the
control task.

I. INTRODUCTION

Decentralized control problems arise when several deci-
sion makers, or controllers, need to determine their actions
based only on a subset of the total information available
about the system. These types of problems arise in areas as
diverse as physiology, economics and the power grid.

In the past decade, this field has seen an explosion of
advances at the theoretical, algorithmic and practical levels.
We provide a brief survey of results most relevant to our
paper in the following, and refer the reader to the excellent
tutorial paper [1] for a thorough and timely presentation of
the current state of the art in optimal decentralized control
subject to information constraints.

A particular class of decentralized control problems that
has received a significant amount of attention is that of
optimal H2 (or LQG) control subject to delay constraints. In
this case, the information constraints can be interpreted as
arising from a communication graph, in which edge weights
between nodes correspond to the delay required to transmit
information between them. In the case where the underlying
communication graph induces a quadratically invariant (QI)
delay pattern, this problem has been solved via vectorization
[2], semi-definite programming (SDP) [3], [4], and most
recently using an extension of spectral factorization [5].

As promising and impressive as the above results for con-
troller synthesis have been, they all make several assumptions
on the communication graph. The first is that bit-rate limits
and quantization have negligible effects on performance,
and that the defining characteristics of a communication
network, at least from a controls perspective, are its end
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to end transmission and encoding/decoding delays. Results
from Networked Control Systems (NCS) theory indicate that
indeed this is in general a reasonable assumption (c.f [6] for
a recent survey). Another is that these delays are fixed: in
[7], we make a first step towards relaxing this assumption.

Stronger still, however, is the very assumption that a
communication graph has already been designed that is well
suited for decentralized optimal control. Very little results
informing the design of communication graphs for control
can be found in the literature. Solving for the optimal (with
respect to graph complexity and control performance) com-
munication network is inherently combinatorial in nature,
and tractable methods for computing exact solutions are un-
likely, if not impossible. An approach which has seen much
success in similar problems in other fields has been to employ
convex relaxations in order to approximately recover such
solutions. Even this approach has few representatives in the
control literature as applied to communication design, with
the closest in spirit being: (i) [8] which uses dual variables
for communication graph augmentation, and (ii) [9], which
uses `1−regularization techniques to induce sparsity when
computing a state-feedback controller.

The idea of using convex relaxations in optimization
problems, in particular in the setting of attempting to recover
structured solutions, has a rich and fruitful history in the
machine learning and statistics communities. In particular, it
is often known a priori that the solution to an optimization
problem should be structurally “simple.” It has been shown
that this simple structure can often be approximately, and
sometimes exactly, recovered by minimizing an appropri-
ately chosen convex penalty function. Well known examples
include the `1-norm to induce sparse solutions, and the
nuclear norm to induce low-rank solutions (e.g. [10], [11],
[12]). In [13], this notion of “simplicity” was formalized
and generalized in terms of atomic norms. In addition to [9],
these ideas have also been successfully applied in the context
of system identification [14].

In order to apply these types of techniques, the problem to
be solved must ultimately be reduced to a finite dimensional
convex program. In [5], it is shown that the decentralized H2

problem subject to delay constraints induced by a strongly
connected communication graph can in fact be reduced to
a finite dimensional linearly constrained quadratic program.
In particular, the optimal controller is solved for by decom-
posing it into a centralized, but delayed, component (thus
the need for strong connectivity) and a decentralized finite
impulse response (FIR) component. It is this FIR component
that is solved for in the quadratic program.



Noting that the entire decentralized nature of the problem
is captured in this FIR element, we borrow ideas from
atomic norm mininization in order to propose a convex
programming based method for inducing sparsity patterns
that are consistent with how information propagates through
communication graphs. In particular, we identify the ap-
propriate atomic norm for inducing the desired structure
in the FIR component, and formulate the decentralized
controller and communication graph co-design problem as
a finite dimensional second order cone program (SOCP).
Additionally, we present a tractable algorithm for generating
the atoms required to construct this information propagation
based atomic norm.

This article is structured as follows: Section II provides
a brief summary of the necessary concepts from quadratic
invariance [2], the spectral factorization solution to the dis-
tributed control problem [5], and atomic norm regularization
theory [13]. Section III formally defines the problem to be
solved, and presents our main result. Section IV presents an
algorithm for generating the atomic sets needed to implement
our method. We then present two examples in Section V, and
Section VI finishes with conclusions and directions for future
work.

II. PRELIMINARIES

A. Notation

If M is a subspace of an inner product space, we denote
the orthogonal projection onto M by PM. We let ⊗ denote
the Kronecker product, vec(·) : Rp×q → Rpq be the
vectorization operator that maps a matrix to a vector through
the stacking of its columns, and supp(·) : Rp×q → Rp×q be
the support operator, where {supp(A)}ij = 1 if Aij 6= 0,
and 0 otherwise.

We let Eij ∈ Rp×q denote the matrix with element (i, j)
set to 1, and all other elements set to 0. For any set Ω, we
denote by 2Ω the power set of Ω, that is to say the set of all
subsets of Ω. Finally, for x ∈ R we denote by bxc and dxe
the floor and ceiling operators, respectively.

B. H2 Preliminaries and Notation

Let D ={z ∈ C : |z| < 1} be the unit disc of complex
numbers. A function G : (C

⋃
{∞})\D→ Cp×q is in H2 if

it can be expanded as

G(z) =

∞∑
i=0

1

zi
Gi

where Gi ∈ Cp×q and
∞∑
i=0

Tr(GiG
∗
i ) <∞. Define the

conjugate of G by

G(z)∼ =

∞∑
i=0

ziG∗i

H2 is a Hilbert space with inner product given by

< G,H > =
1

2π

∫ π

−π
Tr(G(ejθ)H(ejθ)∼)dθ

=

∞∑
i=0

Tr(GiH
∗
i ),

where the last equality follows from Parseval’s identity.

C. H2 optimal control subject to delays

Let P be a stable discrete-time plant given by

P =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
P11 P12

P21 P22

]
(1)

with inputs of dimension p1, p2 and outputs of dimension
q1, q2. We restrict attention to stable plants for simplicity.
These methods can also be applied to an unstable plant by
using a modified version of the techniques found in [15], as
is shown in [16].

To ensure the existence of stabilizing solutions to the
appropriate Riccati equations (note that stabilizability and
detectability of (A,B2, C2) is implied by the assumption of
a stable plant), we assume (i) DT

12D12 > 0, (ii) D21D
T
21 >0,

(iii) CT1 D12 = 0, and (iv) B1D
T
21 = 0.

For N ≥ 1, define the space of strictly proper FIR
transfer matrices by X = ⊕Ni=1

1
ziC

p2×q2 . We can therefore
decompose 1

zH2 into orthogonal subspaces as

1

z
H2 = X ⊕ 1

zN+1
H2.

In this paper, we are concerned with designing controller
constraints describing delay patterns that correspond to a
strongly connected communication graph. In particular, if
we assume that the longest path between nodes in the
communication graph is of length N , we may restrict our
attention to constraint sets S ⊂ 1

zRp of the form

S = Y ⊕ 1

zN+1
Rp (2)

with Rp the space of proper real rational transfer matrices,
and Y = ⊕Ni=1

1
ziYi ⊂ ⊕

N
i=1

1
ziR

p2×q2 ⊂ X .
In this way Y encodes the information propagation be-

tween nodes, which is governed by the underlying commu-
nication graph, and 1

zN+1Rp corresponds to a centralized
component in which global, but delayed, information is
known. It is precisely this structure that will be exploited in
order to reduce this problem to a finite dimensional convex
program.

The decentralized control problem of interest is to design
a controller K ∈ S so as to minimize the closed loop H2

norm of the system:

minimize
K

||P11 + P12K(I − P22K)−1P21||H2

s.t.K ∈ S
(3)

In [2], it was shown that if the constraint set S is
quadratically invariant, then one may pass to the Youla
parameterization Q = K(I − P22K)−1 in (3) without loss.



Definition 1: A set S is quadratically invariant under P22

if
KP22K ∈ S for all K ∈ S (4)

Since K is assumed to be strictly proper and stabilizing,
Q must be strictly proper and stable: thus (3) can be reduced
to the following model matching problem:

minimize
Q

||P11 + P12QP21||H2

s.t. Q ∈ S
⋂

1
zH2

(5)

For technical simplicity, all controllers in this paper are
assumed to be strictly proper – the results extend to non-
strictly proper controllers, but the resulting formulas are more
complicated. Although this problem admits several solutions
[17], [2], [3], [4], we follow the one presented in [5], as it
has structure that we exploit in the sequel.

D. Reduction to a Quadratic Program

Let X , Y be the stabilizing solutions to the following
Riccati Equations

X = CT1 C1 +ATXA− (ATXB2 + CT1 D12)×
Ω−1(ATXB2 + CT1 D12)T

Y = BT1 B1 +AY AT − (AY CT2 +B1D
T
21)×

Ψ−1(AY CT2 +B1D
T
21)T

where Ω := DT
12D12 + BT2 XB2, and Ψ := D21D

T
21 +

C2Y C
T
2 . Define the regulator and filter gains, respectively,

as

K = −Ω−1(BT2 XA+DT
12C1)

L = −(AY CT2 +B1D
T
21)Ψ−1

and the auxiliary matrix T by

T = Ω1/2

[
A L
K 0

]
Ψ1/2. (6)

Finally, let WL and WR be left and right spectral factors for
P∼12P12 and P21P

∼
21 such that

P∼12P12 = W−∼L W−1
L

P21P
∼
21 = W−1

R W−∼R .

We first present the classical solution to the delayed model
matching problem, from which the decentralized solution is
then constructed.

Theorem 1: The optimal solution to the delayed model
matching problem

minimizeQ ||P11 + P12QP21||H2

s.t. Q ∈ 1
zN+1H2

(7)

is given by

QN = −WLP 1

zN+1H2
(T )WR (8)

Theorem 2: [5] The optimal solution to (5) is given by

Q∗ = U∗ + V ∗

where V ∗ ∈ Y is the unique minimizer of

||G(V )||2H2
+ 2 < G(V ), T > (9)

with G(V ) = PX (W−1
L VW−1

R ), and

U∗ = QN −WLP 1

zN+1H2
(W−1

L V ∗W−1
R )WR ∈

1

zN+1
H2.

(10)
The optimal cost is then given by

||P11 + P12QNP21||2H2
+ ||G(V ∗)||2H2

+ 2 < G(V ∗), T >
(11)

We now present the quadratic optimization problem that is
solved to obtain the FIR component V ∗ of the decentralized
controller. For ease of notation, let Gi(V ) = Gi, and H =
W−1
L , J = W−1

R . Note that H and J can be expanded
as H =

∑∞
i=0

1
ziHi and J =

∑∞
i=0

1
zi Ji. Similarly, T

and V admit the expansions T =
∑∞
i=1

1
ziTi, and V =∑N

i=1
1
ziVi ∈ Y , with each Vi ∈ Yi.1

Lemma 1: (Reduction to a Quadratic Program)

The FIR transfer matrix G(V ) can be written as

G(V ) =

N∑
i=1

1

zi
Gi, with Gi =

∑
j,l≥0,k≥1
j+k+l=i

HjVkJl (12)

and, applying Parseval’s identity to (9), we can formulate the
optimization problem as

minimizeV

∑N
i=1 TrGiG

T
i + 2

∑N
i=1 TrGiT

T
i

s.t. Vi ∈ Yi
(13)

Remark 1: It was shown in [5] that (13) is a convex
quadratic program with a unique solution.

Thus, we see that in solving the decentralized control
problem in this manner, the entire decentralized nature of the
controller is captured in the FIR filter V – furthermore this
filter is solved for via a finite dimensional convex program.

As formulated, the objective function of (13) corresponds
to the improvement over the delayed centralized controller
(7) due to the addition of an FIR filter V . It will be more
convenient for us to formulate the problem in terms of a de-
viation from the (classical) centralized optimal controller. To
do so, we observe that the optimal FIR filter V ∗ is unchanged
if a constant is added to the objective of optimization (13).
Thus, adding

∑N
i=1 TrTiT

T
i yields the following equivalent

formulation

minimizeV

∑N
i=1 Tr(Gi + Ti)(Gi + Ti)

T

s.t. Vi ∈ Yi
(14)

As shown in the following lemma, this objective function is
precisely the deviation from the optimal centralized closed
loop norm due to the decentralized constraints Y .

Lemma 2: The optimal cost to (5) is given by (N2
c +∑N

i=1 Tr(Gi(V
∗) + Ti)(Gi(V

∗) + Ti)
T )

1
2 , where Nc is the

closed loop norm of the classical optimal centralized system,
and V ∗ is the solution to (13) and (14).

1The component matrices Hi, Ji and Ti can be easily computed via state
space methods, c.f. [5].



Proof: From (11), we have that the square of the
optimal cost to (5) is given by

||P11 + P12QNP21||2H2
+ ||G(V ∗)||2H2

+ 2 < G(V ∗), T >
= ||P11 + P12QNP21||2H2

+ ||G(V ∗)||2H2

+2 < G(V ∗),PX (T ) >
= ||P11 + P12QNP21||2H2

− ||PX (T )||2H2

+||G(V ∗) + PX (T )||2H2

where the last equality follows from adding and subtracting
||PX (T )||2H2

=
∑N
i=1 TrTiT

T
i . We note that applying Parse-

val’s identity to ‖G(V ∗) + PX (T )||2H2
yields the objective

function of (14), and so it suffices to prove that ||P11 +
P12QNP21||2H2

− ||PX (T )||2H2
= N2

c .
This identity can be derived via spectral factor methods

similar to those used in [5], but we choose to present here
an optimization based proof of this fact. We first observe that
the optimal solution V ∗C to (13) with the affine constraints
removed coresponds to the first N elements of the impulse
response of the optimal centralized controller. These can be
solved for analytically as V ∗C = −G−1(PX (T )), where G−1

is the inverse of the linear operator G(V ) defined in (12)
(note that under our assumptions, G is invertible, c.f. Section
III.A.3 [8]). This yields an optimal value of −||PX (T )||2H2

=

−
∑N
i=1 TrTiT

T
i , which, when combined with (11), gives the

desired result.

E. Atomic norms and structured solutions

As mentioned in the introduction, it is often known a
priori that the solution to an optimization problem should
be “simple,” and that this simple structure can be promoted
through the use of an appropriate convex function. This
notion of solutions with simple structure, in the context of
linear inverse problems, has been formalized and generalized
in terms of atomic norms [13].

In particular, if it is known that the true solution X∗ to a
set of linear equations

y = Ax+ ν, (15)

for some bounded noise term ||ν||2 ≤ δ, should consist of
a linear combination of a small number of “atoms”, then it
is shown that one should seek the solution that minimizes
a so-called atomic norm, subject to consistency constraints.
Specifically, if one assumes that

X∗ =

r∑
i=1

ciai, ai ∈ A, ci ≥ 0

for A a set of appropriately scaled and centered “atoms,”
and r a small number relative to the ambient dimension,
then solving

minimizeX ‖X‖A
s.t. ‖y −AX‖22 ≤ δ2 (16)

with the atomic norm ‖ · ‖A given by the gauge function

||X||A : = inf{t ≥ 0 | X ∈ tconv(A)}
= inf{

∑
a∈A |ca| | X =

∑
a∈A caa}

(17)

results in solutions that both satisfy the consistency constraint
‖y−AX‖22 ≤ δ2, and are sparse at the atomic level (i.e. are
a linear combination of a small number of elements a ∈ A).

The geometric justification behind the success of these
methods is that the unit-ball of an atomic norm is appro-
priately “pointy” in high dimensions, and thus solutions are
likely to be at singularities (i.e. edges or corners) of the
norm-ball, inducing the desired simple structure.

In contrast to [14] and results typical of the machine
learning and statistics community, which attempt to identify
an underlying true model, we, much as in [9], use atomic
norm minimization as a tool for design.

III. COMMUNICATION DELAY CO-DESIGN VIA ATOMIC
NORM MINIMIZATION

We begin by formally defining the information propagation
pattern, or path, induced by a graph. We then impose
additional constraints on the set of paths we allow such that
they are compatible with both QI conditions and the physical
restrictions of the design problem. Given such a collection
of paths, which we term implementable, we show that they
can be used to construct an atomic norm that induces simple
communication patterns. With these tools at our disposal,
we formulate the communication delay pattern co-design
problem as a convex program that allows the designer an
explicit trade off between closed loop performance and
communication graph complexity.

For ease of presentation, we assume that the communica-
tion delay between neighboring nodes is 1, and that the nodes
are single-input single-output (SISO) plants – the results and
definitions extend to the general case in a straightforward, if
not notationally cumbersome, way. We provide some brief
comments on how this can be accomplished at the end of
the section. In light of the SISO nature of the nodes, we let
p2 = q2 = p in the following.

A. Information propagation patterns

Key to our approach is generating sparsity patterns that are
consistent with how information propagates across a graph.
We assume that nodes can share the information that they
have access to with their neighbors at each time step – as
such, one can view the information propagation through the
graph as a spreading of non-zero terms with time.

Definition 2: Let s ∈ Rp×p define a sparsity pattern
corresponding to the adjacency matrix of a graph, where we
assume self loops such that sii = 1 for all i. We define the
information propagation pattern, or path, induced by s over
D time steps, Ps(D), as

Ps(D) := ⊕Di=1
1
zi supp(si). (18)

Similarly, we define the set of information propagation
patterns, or set of paths, induced by a set of sparsity patterns
Σ over D time steps to be

PΣ(D) := {Ps(D) | s ∈ Σ}. (19)
With these definitions, we see that indeed, the information
available at node i spreading to its neighbors is reflected in



Ps(D) by the spreading of non-zero terms as s is raised to
higher and higher powers.

In a design setting, the set of sparsity patterns Σ will
be chosen such that every s ∈ Σ defines an adjacency
matrix corresponding to a communication graph that can be
implemented under the physical constraints of the system.
For example, direct links between physically distant plants
may be disallowed to ensure that the system can actually be
built as designed.

Our approach will be to construct simple communication
graphs by taking linear combinations of a small number of
elements s ∈ Σ. As such, we need to ensure that a graph
resulting from an arbitrary sum of sparsity patterns s ∈ Σ (i)
also respects the physical constraints of the system, and (ii)
results in a controller K that can be implemented. Note that
(i) holds automatically if each s ∈ Σ is chosen to respect the
physical constraints of the system. A sufficient condition to
ensure that (ii) holds is that the maximal graph of Σ is QI
under P22.

Definition 3: The maximal graph σ of a sparsity set Σ is
given by

σ := supp

(∑
s∈Σ

s

)
We say that both the sparsity set Σ, and the set of paths
PΣ(D) it induces, are implementable under P22 if Pσ(D)⊕

1
zD+1H2 is QI under P22.

Under these definitions, an arbitrary sum of sparsity pat-
terns P ∈ PΣ(D) has its support contained in Pσ(D).
If Σ is implementable under P22, the QI condition on
Pσ(D) implies that any constraint set generated by such
an overlay of sparsity patterns will result in a controller
K ∈ Pσ(D)⊕ 1

zD+1H2, i.e. one that is implementable under
the physical constraints of the problem.

A stronger requirement (that in practice is easily met,
as will be illustrated in Section IV) is that every path be
individually implementable.

Definition 4: If for every s ∈ Σ, we have that Ps(D) ⊕
1

zD+1H2 is QI under P22, then PΣ(D) is strongly imple-
mentable.

B. The path-based atomic norm

Our objective in this subsection is to construct an atomic
norm that will induce sparsity patterns in the FIR filter V that
are consistent with implementable information propagation
patterns.

It follows that the atomic elements out of which we will
construct our solution, and that will induce an appropriate
atomic norm (17), are precisely those with sparsity patterns
defined by the information propagation patterns induced
by a set Σ that is (strongly) implementable under P22.
Additionally, as these paths may overlap, we must take care
to ensure that elements that lay in the intersection of paths
are not penalized more than once.

In order to work with FIR filters in the context of finite
dimensional convex optimization, we overload notation and

define the vectorization vec(V ) of an FIR filter V with
impulse response matrices Vi, i = 1, ..., D, to be

vec(V ) = vec
([

V1 . . . VD
])

(20)

With this in mind, let us fix a sparsity pattern s ∈ Rp×p.
This sparsity pattern induces a path Ps(D), which in turn
induces a family of atoms APs(D) in the following manner:

APs(D) := {vec(V ) ∈
(
RDp2

)
| V = [V1, . . . , VD],

||vec(V )||2 = 1, supp(Vi) ⊂ supp(si), ∀i = 1, ..., D}
(21)

i.e. the set of all FIR filters with unit Euclidean norm (after
vectorization) with support contained within Ps(D).

In particular, each atom as ∈ As is within an appropri-
ate

∑D
i=1 |supp(si)|-dimensional Euclidean norm unit-ball,

embedded in RDp2 . For ease of notation, we will write
the condition supp(Vi) ⊂ supp(si), ∀i = 1, ..., D, as
supp(V ) ⊂ supp(Ps(D)).

Consider now a(n) (strongly) implementable set Σ of
sparsity patterns. We can then define the atomic set A as

A :=
⋃
s∈Σ

APs(D)

and it can be shown (by specializing the arguments in [18])
that, for an FIR filter V , ||vec(V )||A is given by the value
of the following convex program

minimize{Vs}
∑
s∈Σ ||vec(Vs)||2

s.t. vec(V ) =
∑
s∈Σ vec(Vs)

supp(Vs) ⊂ supp(Ps(D)) ∀s ∈ Σ.
(22)

This program finds a minimum ‖·‖A decomposition of V in
terms of FIR filters that respect the information propagation
patterns induced by Σ.

Geometrically, this atomic norm ball consists of the convex
hull of the lower-dimensional Euclidean balls induced by
each Ps(D) ∈ PΣ(D) embedded in RDpq. Much as the
nuclear norm can be viewed as the `1-norm of the singular
values, inducing sparsity in that respect, this norm can be
seen as an `1-norm on paths, inducing sparsity at the path
level. It is also worth noting that this penalty function is
known as the group LASSO with overlap in the machine
learning and statistics community [18].

Example 1: Consider the sparsity pattern

s =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


corresponding to the adjacency matrix of a 4-player chain.
The information propagation path induced is then

Ps(2) =
1

z


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⊕ 1

z2


1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1


and the corresponding family of atoms is given by

APs(2) = {vec(V ) ∈ R32 | V = [V1, V2],
‖vec(V )‖2 = 1, supp(V ) ⊂ supp(Ps(2))}



C. Problem formulation and solution via convex program-
ming

We now have the definitions necessary in place to formally
state our problem.

Problem 1: Given a plant (1) and a(n) (strongly) im-
plementable sparsity set Σ, design a communication delay
pattern that is (i) (strongly) implementable, (ii) simple and
(iii) yields acceptable closed loop performance.

As a fair amount of definitions and notation have been
introduced, before presenting our main result, we briefly
summarize (i) the assumptions required for our approach
to work, and (ii) the general approach taken to derive our
method.

First, we recall that our results build on the solution to the
decentralized H2 optimal control problem presented in [5].
This solution, and consequently our method, assumes both
an open-loop stable plant, and a strongly connected com-
munication graph. This latter condition is necessary for the
decomposition of the optimal controller into a centralized,
but delayed, component, and a local FIR component V that
is solved for through a finite dimensional convex program
(14).

With this convex program at our disposal, we borrow ideas
from machine learning and statistics, specifically those of
atomic norm minimization, and modify it for our purposes.
In particular, we remove the affine constraints that impose
the decentralized nature of the FIR component, and rather
minimize an appropriately chosen atomic norm subject to
performance constraints, so as to induce a simple, but im-
plementable, communication structure between nodes.

Theorem 3: Suppose that Σ is a sparsity pattern that in-
duces a set of paths PΣ(D) that is (strongly) implementable
under P22, and let δ > 0 be a tuning parameter. Then the
solution V ∗ to the finite dimensional SOCP

minimizeV, {Vs}
∑
s∈Σ ||vec(Vs)||2 s.t.

(c1)
∑D
i=1 Tr(Gi(V ) + Ti)(Gi(V ) + Ti)

T ≤ δ2

(c2) vec(V ) =
∑
s∈Σ vec(Vs)

(c3) supp(Vs) ⊂ supp(Ps(D)) ∀s ∈ Σ

(23)

leads to a FIR filter (i) with a communication delay pattern
that is (strongly) implementable, and (ii) that yields a closed
loop system with norm Ndes satisfying N2

des ≤ N2
c + δ2,

where Nc is the closed loop norm of the optimal centralized
H2 controller, and Gi(V ) and Ti are as defined in Section
II.

Before presenting the proof, we note that the objective
function, along with constraints (c2) and (c3) are simply
the atomic norm (22), while (c1) is precisely the objective
function of (14). We therefore have that the tuning parameter
δ bounds the deviation of the system with respect to the
optimal centralized solution. Through the choice of δ, this
program gives the designer explicit control over the trade off
between the complexity of the communication graph and the
control performance.

Proof: Convexity of program (23) follows from the
fact that ‖ · ‖2 is a convex function, that convexity is
preserved under non-negative linear combinations, that (c1)

is a second order cone constraint, and that (c2) and (c3)
are affine constraints. We therefore have that (23) is a finite
dimensional SOCP and is solvable in polynomial time [19].

The (strong) implementability of the resulting controller
follows immediately by the hypothesis that PΣ(D) is
(strongly) implementable. The condition on the closed loop
norm follows directly from Lemma 2:

N2
des = N2

c +
∑N
i=1 Tr(Gi(V

∗) + Ti)(Gi(V
∗) + Ti)

T

≤ N2
c + δ2

Remark 2: Exploiting the identity vec(MXN) = (NT ⊗
M)vec(X) for matrices M , X and N of compatible dimen-
sion, (23) can be recast as

min{V } ||vec(V )||A s.t.
‖vec(T )−M · vec(V )‖22 ≤ δ2 (24)

for an appropriately chosen matrix M such that M ·vec(V ) =
vec(

∑D
i=1Gi(V )) (an explicit expression for M can be

derived in terms of Ji and Hi, but is not informative nor
necessary to our discussion). This atomic norm minimization
problem is of exactly the same form as (16), and we therefore
expect the solution of this program to be simple at the atomic
level [13], resulting in simple communication graphs.

Remark 3: Once a sparsity pattern is identified for the FIR
filter V, a refinement step (much as the one suggested in [9])
can be performed by setting Y =

∑
s∈Σ∗ Ps(D) in (13),

where Σ∗ ⊂ Σ is the set of active sparsity patterns identified
by (23).

1) Extensions to larger delays and MIMO subsystems:
We begin by considering the case where the communication
delay between nodes is now given by τ > 1. In this case,
the information propagates at a slower rate, and this must be
reflected in the resulting information propagation patterns. In
particular, suppose that D is the length of the longest path
between nodes in a graph. We then have that

Ps(τ,D) := ⊕Dτi=1
1
zi supp(sd

i
τ e), (25)

i.e. we have that the sparsity pattern remains constant over τ
time steps before spreading. A similar idea can be applied to
the case of differing communication delays between nodes,
but we do not have a concise notational way of expressing
the resulting information propagation patterns.

In order to extend our results to multi-input multi-output
(MIMO) subsystems, it suffices to replace each non-zero
term in Ps(D) with an appropriately sized all-ones matrix
1 such that the resulting atomic sets lead to constraints that
are compatible with the MIMO nature of the plant.

IV. GENERATING SPARSITY PATTERNS

What remains to be specified is a method for generating
sparsity patterns s out of which to build communication
graphs. At first, this task seems to be one that may not
admit a general method that is computationally tractable. Due
to the inherent flexibility of our approach, it is difficult to
make any general claims in this respect – what constitutes
an implementable communication link is typically a very



application specific property. In the following, we provide
a tractable algorithm that seems to yield good performance
in the resulting graph/controller combination. Although these
are preliminary methods, they have already shown promise
in practice. The tractable design of atomic sets with provable
performance guarantees will be the topic of future research.

We do however point out the following features of the
problem which give hope that such tractable solutions may
in fact exist for interesting problems: (i) The number of
possible paths is significantly reduced if we assume sym-
metry in the communication graph (i.e sij = sji). Such
an assumption is often easily satisfied in practice. (ii) If
strong implementability is desired, QI imposes constraints
on path lengths between nodes, greatly reducing the number
of paths that need to be enumerated. (iii) Links that are not
physically realizable also remove degrees of freedom from
the problem, once again greatly reducing the size of the set of
implementable paths. (iv) Since overlap is allowable between
paths, algorithms do not have to keep track of what paths
have already been generated, simplifying implementation. (v)
In many applications, such as robotics and neurophysiology,
the structure of the component paths are known a priori – it
is how fast these paths need to be, and how many of them
need to be present, to achieve a specific level of performance
that needs to be determined. In this case the atomic set is
entirely predefined by domain specific knowledge.

In the following, we present a general algorithm that
introduces a mild amount of conservatism to the design
process. An additional algorithm specialized to the second
example of Section V can be found in [20].

We assume that communication links are symmetric, fix
D such that all of the paths are implementable, and suppress
it when specifying paths to ease notational burden. Our
algorithm centers around a base QI pattern sQI ∈ Σ and
a set of admissible enhancement links E .

Definition 5: Given a sparsity set Σ, a sparsity pattern
sQI ∈ Σ is a base QI pattern only if it induces a strongly
implementable path PsQI , and sQI ⊂ s for all s ∈ Σ.

Definition 6: The set E of admissible enhancement links
encodes the additional links beyond the base QI pattern that
can be physically implemented:

E : = {Eij + Eji | a direct link between nodes i and j
is physically implementable}

⋃
{0}.

(26)
If such a base QI pattern exists, we can then express any

s ∈ Σ, as s = sQI +
∑
e∈F e for some sQI ∈ Σ and

some F ⊂ 2E , and it is easily verified that Σ is strongly
implementable.

A general algorithm: It is a well known principle in
optimal control that delay is detrimental to performance.
In fact, since Q is stable, it is a common feature that
performance is predominantly determined by the first few
elements of its impulse response, as higher order elements
decrease in magnitude exponentially. With this in mind, we
propose building a constraint set around a predefined base
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Fig. 1: Physical and communication networks for the ex-
amples considered in Section II. Solid black lines denote
physical links and communication links included in the base
path sQI . Dashed green lines are additional communication
links selected by our algorithm.

QI pattern sQI as:

Σ = {s | s = sQI + e, e ∈ E}.

This allows for any sparsity pattern corresponding to the
adjacency matrix of a physically implementable communi-
cation graph to be constructed from a sum of the elements
in Σ, with |Σ| = |E|. However, the simplicity of this
sparsity pattern set comes at a cost: there is a degree of
conservatism that is introduced. For general r, s ∈ Σ, t > 0,
supp(rt+ st) ⊂ supp ((r + s)t) – i.e. summing the induced
information propagation pattern of two sparsity patterns
typically yields a subset of the information propagation
pattern induced by the sum of the sparsity patterns.

However, this conservatism is only introduced in later
components of V , and, by our earlier observation that
performance is dominated by the first few elements of
the impulse response of the controller, does not seem to
introduce much additional conservatism in the graph design
procedure. If the resulting performance of the algorithm is
not deemed acceptable, the sparsity pattern set Σ can be
augmented to additionally include all “2-link enhancements”
(i.e. Σ = {s | s = sQI + e + f, e, f ∈ E}) – this pushes
the conservatism back even further back in time in V , but
comes at a cost of

(b |E|2 c
2

)
more elements. This process can

be repeated for additional “n-link enhancements”, as needed
and allowable by computational constraints.

Additionally, once the set of active paths in Σ∗ ⊂ Σ is
identified, the refinement step mentioned in Remark 3 can
be performed, removing the conservatism in the controller
design. We illustrate this approach on a 13 node system with
a honeycomb physical interconnection in Section V.

V. EXAMPLES

We now illustrate our method on two systems (1) with sub-
stantially different physical topologies. In all of the following
examples, we let N denote the number of players in the prob-
lem, and set B2 = C2 = IN , B1 = [10IN , 0N×N ], C1 =
[10IN , 0N×N ]T , D11 = 02N×2N , D12 = [0N×N , 2IN ]T ,
D21 = [0N×N , 5IN ] and D22 = 02N×N . In each case, we
generate A randomly such that it agrees with the topology



of the physical interconnection of the plant, and normalize it
such that |λmax(A)| = .999, ensuring stability of the open-
loop system. We choose a base path sQI around which to
build our atoms that mimics the physical interconnection of
each plant, an approach that ensures strong implementability
of the resulting sparsity set. Additionally, this base path,
and the information propagation pattern that it induces, is
a conventional communication structure that is assumed in
many decentralized control problems.

The key point to notice in both examples is that through
the addition of a small number of unconventional links,
the performance of the easily implemented decentralized
controller is made as close as desired to that of a physically
unrealizable centralized controller.

Example 2: The 13-player honeycomb problem
The physical interconnection is illustrated in Figure 1(a).

The set of allowable enhancement links is given by con-
nections between neighboring nodes in the same row: for
example, node 7 can add links to nodes 6 or 8, but to
no others. For the A generated for this example, the open
loop norm of the system is 5915, the centralized closed
loop norm Nc is 588, and the delayed centralized closed
loop norm Nd is 1105. We solved program (23), with Σ
generated according to the general algorithm described in
Section IV, and δ = .0005(N2

d − N2
c ) = 437, to design

the communication graph shown in Figure 1(a). We then
performed the refinement step to design a controller that
yielded a closed loop norm of Ndes = 648, which performs
better than a controller designed on the base chain topology,
which yields a closed loop norm of 677.

Example 3: The 8-player 2-hop chain problem
The physical interconnection is illustrated in Figure 1(b).

The set of allowable enhancement links is given by connec-
tions between second neighbors: for example node 3 can add
links to nodes 1 and 5, but no others. For the A generated
for this example, the open loop norm of the system is 5850,
the centralized closed loop norm Nc is 420, and the delayed
centralized closed loop norm Nd is 802. We solved program
(23), with Σ generated according to the specialized algorithm
described in Section IV of [20], and δ = .0004(N2

d −N2
c ) =

187, to design the communication graph shown in Figure
1(b). We then performed the refinement step to design a
controller that yielded a closed loop norm of Ndes = 421,
nearly identical to the centralized performance, and much
better than the base chain closed loop norm of 542.

VI. CONCLUSION

This paper presented an atomic norm minimization based
approach to communication graph co-design in the decen-
tralized H2 control subject to delay setting. It was shown
that this problem could be formulated as a finite dimensional
convex program that provides the designer a tuning parame-
ter that allows for an explicit trade off between closed loop
performance and communication graph complexity.

There are many promising directions for future work. In
order to provide any kind of rigorous guarantees about the
quality of the path generating algorithm that we presented,

we will need to determine a proper criteria against which
to measure the success of a co-design problem. With this
in mind, an immediate goal is to extend the non-asymptotic
consistency results typical of the machine learning literature
to our setting. Once this has been accomplished, we believe
that this will provide insight for more principled path gen-
erating algorithms.
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