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Abstract— This paper presents an explicit solution to a two
player distributed LQG problem in which communication
between controllers occurs across a communication link with
varying delay. We extend known dynamic programming meth-
ods to accommodate this time-varying delay, and show that the
resulting optimal controller has a piecewise linear structure,
with control actions dictated by the current and next delay
regime. By treating the next delay regime as a disturbance
in the dynamic programming argument, we then derive the
optimal causal controller.

I. INTRODUCTION

Decentralized control problems arise when several deci-
sion makers, or controllers, need to determine their actions
based only on a subset of the total information available
about the system. These types of problems arise in areas as
diverse as physiology, economics, and the power grid.

In the past decade, this field has seen an explosion of
advances at the theoretical, algorithmic and practical levels.
We provide a brief survey of the more directly relevant results
to our paper in the following, and refer the reader to the
excellent tutorial paper [1] for a thorough and timely presen-
tation of the current state of the art in optimal decentralized
control subject to information constraints.

A particular class of decentralized control problems that
has received a significant amount of attention over the past
few decades is that of optimal H2 (or LQG) control subject
to delay constraints. In this case, the information constraints
can be interpreted as arising from a communication graph,
in which edge weights between nodes correspond to the
delay required to transmit information between them. For
the special case of the one-step delay information sharing
pattern, the H2 problem was solved in the 1970s using
dynamic programming [2], [3], [4]. For more complex delay
patterns, the separation principle fails, making extensions
beyond the state feedback case [5], [6] difficult, although
semi-definite programming (SDP) [7], [8], vectorization [9],
and spectral factorization [10] based solutions do exist. It
is worth noting that for specific systems, sufficient statistics
and a generalized separation principle have been identified
and successfully applied [11]. Furthermore, recent work [12]
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provides two dynamic programming decompositions for the
general delayed sharing model.

An underlying assumption in all of the above is that
information, albeit delayed, can be transmitted perfectly
across a communication network with a fixed delay. A
realistic communication network, however, is subject to
data rate limits, quantization, noise and packet drops – all
of these issues result in possibly varying delays (due to
variable decoding times) and imperfect transmission (due
to data rate limits/quantization). The assumption that these
delays are fixed necessarily introduces a significant level of
conservatism in the control design procedure. In particular,
to ensure that the delays under which controllers exchange
information do not vary, worst case delay times must be used
for control design, sacrificing performance and robustness in
the process.

These issues have been addressed by the networked control
systems (NCS) community, leading to a plethora of results
for channel-in-the loop type problems. For example, [13],
[14], [15], [16], [17] identify minimum bit-rate conditions
sufficient to stabilize a system in the almost sure sense
through feedback control over a data-rate constrained chan-
nel. In [18], anytime capacity was identified as the correct
metric for additionally ensuring moment stability. Perfor-
mance and robustness results also exist, such as elegant ex-
tensions of the well known Bode integral formula to quantify
the effect of channels in the loop [19] on performance limits.

Closer in spirit to the results in this paper, [20], [21],
[16], [22], [23] address the design of stabilizing feedback
controllers subject to either varying communication delay or
packet drop outs. Closer still is the work by Gupta et. al.
[24], which addresses optimal LQG control of a single plant
over a packet dropping channel. We note that the previous
references are far from exhaustive, and we refer the interested
reader to the excellent survey paper [25] for a more complete
listing.

What is lacking, however, is a combination of NCS theory
with decentralized optimal control. We believe that there
are two major classes of problems in this emerging field:
(i) the design of communication networks well suited for
decentralized optimal control, and (ii) explicitly accounting
for realistic communication channels between plants. In [26],
we make a first step at addressing the former issue, whereas
this paper focusses on the latter.

We conjecture that due to the relatively high bandwidth
of channels, and the aforementioned well established NCS
theory, data rates and quantization will not be limiting
factors in control performance, but rather that noise, packet



drops and the ensuing varying delays will be of paramount
importance. This notion is the driving motivation behind
the problem addressed in this paper, where we seek to
extend the distributed state-feedback results in [5], [6] to
accommodate varying delays. In addition to allowing for
communication channels to be more explicitly accounted for
in the control design procedure, the ability to accommodate
varying delays provides flexibility in the coding design aspect
of this problem – we are currently exploring the application
of deadline based coding schemes [27], initially designed for
real-time video streaming, to optimal decentralized control.

In this paper, we focus on a two plant system in which
communication between controllers occurs across a com-
munication link with time-varying delay. We extend the
dynamic programming methods in [6] to accommodate this
varying delay, and show that under suitable assumptions, the
resulting optimal controller has a piecewise linear structure.
In particular, within each linear mode, the control policy is
determined by how information is shared at the current and
next time step. We then modify the dynamic programming
argument to treat the next delay regime as a disturbance, and
derive the optimal causal controller.

This paper is structured as follows: in Section II we
fix notation, and outline both the general problem we are
considering, as well as introduce the specific one to be solved
in the paper. Section III surveys relevant results from [6] and
provides novel extensions to accommodate the varying delay.
Section IV presents the optimal controller, comments on its
structure, and demonstrates its efficacy through simulations.
Section V presents the dynamic programming argument used
to derive the controller, and Section VI provides conclusions
and directions for future work.

II. PROBLEM FORMULATION

We begin by describing the general problem of interest,
and then specialize the formulation to the particular case to
be addressed in this paper.

Notation: For a matrix partitioned into blocks

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33


and s, v ⊂ {1, 2, 3}, we let Ms,v = (Mij)i∈s,j∈v . For
example

M{1,2,3},{1,2} =

 M11 M12

M21 M22

M31 M32

 .
We also denote the sequence x(t0), ..., x(t0 + t) by x(t0 :

t0 + t). For a random variable x, we denote by E[x] its
expectation, and for an event A, we denote by P(A) its
probability, and by 1{A} its indicator function, such that
E[1{A}] = P(A).

A. General problem

We consider a cyber-physical system comprised of n linear
time invariant (LTI) sub-systems, which interact with each

other according to two overlaid, but distinct, topologies: (1)
a physical interaction graph and (2) a communication graph.
To encode these interactions, we define the possibly time
varying cyber-physical interaction graph G = (X , Ep, Ec).
We denote by i ∈ X the ith node in the graph, and by xi
the state of the corresponding sub-system. We assume that
each plant i ∈ X has its own control input ui and centered
Gaussian process noise wi (satisfying E[wiw

T
i ] = Wi and

E[wiw
T
j ] = 0 ∀i 6= j), and that plants physically interact

with each other according to Ep. In particular, an edge epij ∈
Ep encodes the delay with which the state xj directly affects
xi, and is non-zero if and only if sub-systems i and j share
a direct coupling through their dynamics. This allows for the
dynamics of each sub-plant to be described by the following
difference equation

xi(t+ 1) = Aiixi(t) +
∑
epij 6=0Aijxj(t− (epij − 1))

+Biui(t) + wi(t)

with initial conditions xi(0) = 0.
Thus the distributed nature of the dynamics of the plant are

captured by Ep. Finally, we define Pij to be the minimum
weight path in Ep from plant j to plant i. This quantity
measures how long it takes for the state at plant j to affect
the state at plant i, even if i and j are not direct neighbors;
i.e. the propagation delay from j to i.

Similarly, Ec defines the delay with which information
can be shared between neighboring controllers, and therefore
imposes the information constraints on the control inputs. In
particular, an edge ecij ∈ Ec encodes the delay with which
control input ui can use state xj , and is non-zero if and only
if sub-systems i and j share a direct link between controllers.
We assume that Ec is a strongly connected graph, and letting
dij be the minimum weight path from node j to i (note
dii =0), we have that ui must be of the form

ui(t) = γi(x1(0 : t− di1), . . . , xn(0 : t− din))

for some Borel measurable function γi.
In our setting, we assume X and Ep are fixed, but allow

Ec to be time-varying – i.e. Ec = Ec(t). We impose only
one additional assumption on Ec(t), namely that for all
t ≥ 0, we have that dij(t) ≤ Pij for all i, j ∈ X ; i.e.
that information is transmitted at least as fast as dynamics
propagate through the plant, regardless of the delay regime.
This condition is trivially satisfied if for all i, j such that
epij 6= 0, we have that ecij(t) ∈ {1, . . . , epij} for all t.
These conditions ensure that the information constraints
are partially nested, which implies that the optimal control
inputs are linear in the associated information [28]. This
is a restatement of the now familiar notion that in order
to preserve the linearity of the optimal control input, there
must not be any incentive to signal through the plant, and
is strongly linked to notions of quadratic invariance [9] and
poset causality [29].

Defining x = (xi)i∈X and u = (ui)i∈X , the control



x1(t) x2(t)δ(t)

Fig. 1: The distributed plant considered in (3). A dummy
node δ(t) = x(t−1) is introduced to maintain compatibility
with the results in [6], making explicit the propagation delay
of P12 = P21 = 2 between plants.

problem then becomes to minimize the average stage cost

lim
N→∞

1

N
E

[
N∑
t=1

x(t)TQx(t) + u(t)TRu(t)

]
subject to the system’s inputs respecting the communication
constraints dictated by Ec(t). The weight matrices are as-
sumed to be partitioned into blocks of appropriate dimension
(i.e. Q = (Qij)i,j∈X and R = (Rij)i,j∈X ), conforming to
the partitions of x and u. We assume Q to be positive semi-
definite and R to be positive definite.

B. The two-player problem
Although a general problem was defined, this paper fo-

cuses on a two plant system with physical propagation
delay of Pij = 2 between plants, and stochastic time-
varying communication delays dij(t) ∈ {1, 2}, where each
dij(t) is assumed to be independent and identically dis-
tributed according to some probability mass function (pmf)
{p, 1 − p}, p ∈ [0, 1]. To ease notation, we let d(t) :=
(d12(t), d21(t)). The assumption of identical distributions
across time is introduced for convenience, and can easily
be removed.

The dynamics of the system are then captured by the
following difference equation:

x1(t+ 1) = A11x1(t) +A12x2(t− 1)
+B1u1(t) + w1(t)

x2(t+ 1) = A21x1(t− 1) +A22x2(t)
+B2u2(t) + w2(t)

(1)

with initial conditions x1(0) = x2(0) = 0, and input
constraints given by

u1(t) = γ1(x1(0 : t), x2(0 : t− d12(t)))
u2(t) = γ2(x1(0 : t− d21(t)), x2(0 : t)).

(2)

In order to build on the results in [6], we model the two
plant system as a three node graph, with a “dummy delay”
node introduced in the middle to enforce the propagation
delay between plants. Specifically, letting δ(t) = [x1(t −
1)T , x2(t− 1)T ]T , where δ is the state of the dummy node,
we obtain the following state space representation for the
systemx1(t+ 1)

δ(t+ 1)
x2(t+ 1)

 =

A11 A1δ 0
Aδ1 0 Aδ2
0 A2δ A22

x1(t)
δ(t)
x2(t)

+B1 0 0
0 0 0
0 0 B2

u1(t)
0

u2(t)

+

w1(t)
0

w2(t)


(3)

{1, δ, 2}
w(0 : t − 3) {1, δ}

w1(t − 2)

{δ, 2}
w2(t − 2)

{2}
w2(t − 1)

{1}
w1(t − 1)

Fig. 2: Information hierarchy graph associated with system
(3). The labeling of the nodes indicates the information
available to to all players in the node, but none of the other
players, under the worst case delay regime d(t) = (2, 2).
We associate with each node v ∈ V a state and control input
component, ζv and ϕv , respectively – by construction they
are pairwise independent.

with A1δ = [ 0 A12] , A2δ = [ A21 0 ], Aδ1 =
[ I 0]T , and Aδ2 = [ 0 I]T . The physical topology
of the plant is illustrated in Figure 1.

To condense notation, we let x̄T = [xT1 , δ
T , xT2 ]T , ūT =

[uT1 , 0, u
T
2 ]T and w̄T = [wT1 , 0, w

T
2 ]T , allowing us to write

(3) as
x̄(t+ 1) = Ax̄(t) +Bū(t) + w̄(t) (4)

for appropriately defined A and B matrices. In order to guar-
antee existence of the stabilizing solution to the correspond-
ing Riccati equation, we assume (A,B) to be stabilizable
and (Q

1
2 , A) to be detectable.

Example 1: The need to take delay into account: Consider
the system (3) with two scalar plants (i.e. x1, x2 ∈ R), A11 =
A22 = 2, A12 = 3, A21 = 4 and B1 = B2 = 1. Let Q = I4,
R = I3 and W1 = W2 = 1. Then the costs (computed as in
Section IV, Theorem 1) for d(t) ≡ (1, 1) and d(t) ≡ (2, 2)
are 35.20 and 301.86, respectively. A significant difference in
performance, which can be made arbitrarily large by varying
A, exists between the two regimes.

Suppose now that the actual delay processes dij(t) are
governed by the pmf {.9, .1}. A conservative approach that
simply implements the dij(t) ≡ 2 controller is unacceptable,
as presumably a performance much closer to that of the
dij(t) ≡ 1 regime should be possible.

III. STATE DECOMPOSITIONS AND GLOBALLY
AVAILABLE INFORMATION

A. Information Hierarchy Graph

In [6], the concept of an information hierarchy graph is in-
troduced in order to decompose the state and control actions
into pairwise independent components, yielding solutions
to the optimal control problem that obey the information
constraints of the system by construction.

The information hierarchy graph associated with system
(3), denoted by I = {V, E}, is given as in Figure 2. The
labeling of the nodes indicates the information (i.e. the
components of the noise vector w(t)) available to to all
players in the node, but none of the other players, under the
worst case delay regime d(t) = (2, 2). We can then associate
with each node v ∈ V a state component, ζv , and a control
component ϕv that depends solely on ζv . These components
are a linear function of their respective noise labels, and thus



by construction are pairwise independent. Additionally, they
satisfy

x(t) = ζ1,δ,2(t)+

[
ζ1,δ(t)

0

]
+

[
0

ζδ,2(t)

]
+

 ζ1(t)
0

ζ2(t)

 (5)

u(t) = ϕ1,δ,2(t) +

[
ϕ1,δ(t)

0

]
+

[
0

ϕδ,2(t)

]
+

 ϕ1(t)
0

ϕ2(t)


(6)

It can be shown [6] that the update equations for the state
decomposition ζv(t) components are given by

ζs(t+ 1) =
∑

r:(r,s)∈E

(As,rζr(t) +Bs,rϕr(t))

for s ∈ V with |s| > 1
ζi(t+ 1) = wi(t) for i = 1, 2

(7)

with initial conditions ζs(0) = 0 for all s ∈ V .

B. Globally Available Information

We will denote by G(d(t)) the globally available informa-
tion at time t, given the current delay regime. In particular
based on the discussion in the previous section, we have
that G(2, 2) := {1, δ, 2} – this follows from the fact that
{1} and {2} are both in {1, δ, 2}, but not simultaneously in
any other node. We also have that the corresponding control
action ϕ1,δ,2 is the action taken by the controller based on
this globally available information.

In other delay regimes, the globally available information
set increases to absorb other components of the state de-
composition. In particular, the labeling of the nodes allows
us to enumerate the globally available information for the
remaining delay regimes by inspection as

G(1, 1) := {{1, δ, 2}, {1, δ}, {δ, 2}}
G(2, 1) := {{1, δ, 2}, {1, δ}}
G(1, 2) := {{1, δ, 2}, {δ, 2}}

(8)

Denoting by ζG(d(t)) the component of x(t) that is globally
available under the delay regime d(t), and by ϕG(d(t)) the
global action taken based on this globally available compo-
nent, we may rewrite (5) and (6) as

x(t) = ζG(d(t)(t) +
∑

v∈V\G(d(t))

I{1,δ,2},vx ζv(t) (9)

u(t) = ϕG(d(t)(t) +
∑

v∈V\G(d(t))

I{1,δ,2},vu ϕv(t), (10)

where
ζG(d(t)) :=

∑
v∈G(d(t))

I{1,δ,2},vx ζv(t), (11)

and Ix and Iu are identity matrices partitioned into blocks
conforming to the partitions of x(t) and u(t), respectively.

In this way, we make explicit the increase in globally
available information due to more favorable delay regimes.
By adopting the convention that ϕ1,δ,2 = ϕG(d(t)), and that
ϕi,δ = 0 if {i, δ} ∈ G(d(t)), for i = 1, 2, the update
dynamics (7) remain consistent.

IV. OPTIMAL CONTROLLER STRUCTURE AND EXAMPLES

This section provides the two main results of the paper,
namely the optimal solution for the case of known and
unknown d(t + 1). Additionally, we revisit the motivating
Example 1 from Section II-B.

Note that in the following we assume that the current
global delay regime d(t) = (d12(t), d21(t)) is known – in
practice, this requires a negative acknowledgment (NACK)
mechanism. Future work will explore extensions of our
results to when NACKs are not available.

A. Known d(t+ 1)

Let X1,δ,2 be the stabilizing solution to the discrete-time
algebraic Riccati equation

S = Q+ATSA−ATSB(R+BTSB)−1BTSA (12)

and define the global gain K1,δ,2 to be the standard LQR
gain

K1,δ,2 = (R+BTSB)−1BTSA. (13)

For r 6= {1, δ, 2}, let s be the unique node such that
(r, s) ∈ E . Assume that Xs has already been defined, and
define Xr(t) by

Xr(t) =


X ′r,rs if r ∈ G(d(t))

Qr,r +As,rTX ′sA
s,r −As,rTX ′sBs,r × . . .

(Rr,r +Bs,rTX ′sB
s,r)−1Bs,rTX ′sA

s,r otherwise
(14)

where we write X ′s := Xs(t+ 1) to save space.
Define the gain Kr(t) by

Kr(t) = (Rr,r +Bs,rTX ′sB
s,r)−1Bs,rTX ′sA

s,r (15)

and the control input components as

ϕ1,δ,2(t) = −K1,δ,2ζG(d(t))(t)

ϕr(t) =

{
−Kr(t)ζr(t) for r /∈ G(d(t))

0 otherwise
(16)

where the update dynamics for ζr(t) are given by (7), and
ζG(d(t)) is given by (11).

Theorem 1: The optimal controller to the two player prob-
lem defined in Section II-B for known d(t+ 1) is given by

u(t) = ϕ1,δ,2(t) +
∑

r∈V\G(d(t))

I{1,δ,2},ru ϕr(t), (17)

where the ϕr(t) are given as in (16). The steady state cost
is given by ∑

d∈{1,2}2
pdTr(W1X

d
1 +W2X

d
2 ) (18)

where Xd
i corresponds to the bottom level recursion matrix

for a constant delay pattern d(t) ≡ d, and pd := P(d(t) = d)
is the probability of that delay regime occurring.

Remark 1: The need to know d(t+1) at time t arises from
the matrix recursions (14) – Xi(t) is a function of Xi,δ(t+1),
which in turn is a function of d(t + 1). This corresponds
to local actions being different depending on the amount of



globally available information at the next time step. Equation
(18) shows that in this setting the infinite horizon cost is a
convex combination of the individual delay regimes’ costs,
weighted by the probability of each regime.

Remark 2: In the case of more favorable delay regimes,
what can be seen as redundant layers are added to the
matrix recursions (14) to maintain compatibility with the
delay-invariant information hierarchy graph. In particular, if
dij(t + 1) = 1, then Xj,δ(t + 1) is simply a sub-block of
X1,δ,2, and thus Xj(t) is directly a function of X1,δ,2 as
well.

B. Unknown d(t+ 1)

As will be shown in the next section, Theorem 1 can be
adapted to the case where d(t+ 1) is not known by treating
it as a disturbance in the dynamic programming argument.

Theorem 2: The optimal controller to the two player prob-
lem defined in Section II-B for unknown d(t + 1) is given
by

u(t) = ϕ1,δ,2(t) +
∑

r∈V\G(d(t))

I{1,δ,2},ru ϕr(t), (19)

where the ϕr(t) are given as in (16), but where now X ′i,δ =
Ed(t+1)[Xi,δ(t + 1)] in (14). The steady state cost is then
given by

Tr(W1X1 +W2X2) (20)

with X1 and X2 as in (29).
Remark 3: Not knowing the next delay regime leads to

a “hedging” type controller, where local actions are taken
based on the expected amount of globally available informa-
tion at the next time step.

Remark 4: Due to the structure of the controller, Theorem
2 indicates that if the distribution of d(t) is not known, it
may be estimated in real time online, and so long as the
estimator is consistent, the same steady state cost will be
achieved.

C. Examples

We revisit the system introduced in Example 1, and
consider the following controllers:

1) d(t + 1) is known at time t – the steady state cost
predicted by Theorem 1 is 61.87.

2) d(t + 1) is not know at time t, but d(t)’s distribution
is known – the steady state cost predicted by Theorem
2 is 66.77.

3) d(t+ 1) is not know at time t, and d(t)’s distribution
is approximated by its local empirical value in real
time (i.e. p̂i(t) = (t)−1

∑t
i=1 1{dij(t)=1}) – as this

estimator is consistent by the i.i.d. assumption on d(t)
and the Strong Law of Large Numbers, the steady state
cost predicted is once again 66.77.

Illustrated in Figures 3(a)-(c) are the empirical costs,
which can be seen to converge to the predicted ones. The
important thing to note here is that all three methods per-
form significantly better than the conservative approach of
ignoring early arriving information and implementing the
d(t) ≡ (2, 2) controller.

V. CONTROLLER DERIVATION

A. Known d(t+ 1)

We follow [6], and begin by considering the finite horizon
problem of minimizing the expected cost of

N−1∑
t=1

(x(t)TQx(t) + u(t)TRu(t)) + x(N)TQNx(N). (21)

Denoting the optimal expected cost to go function by
E[J(ζ, t)], where the expectation is over the noise process
w(t), and recalling the state decomposition (9), we may write

E[J(ζ,N)] = E[xTQNx]
= E[ζTG(d(t))QNζG(d(t))] + . . .∑

s∈V\G(d(t))

E[ζTs Q
s,s
N ζs]

(22)

where the last equality follows from the pairwise indepen-
dence of the ζs.

Set Xs(N) = Qs,sN for all s ∈ V , and define J(ζ,N) =∑
s∈V ζ

T
s Xs(N)ζs. Inductively assume that for some t+1 ≤

N , J(ζ, t+ 1) is given by

J(ζ, t+ 1) =
∑
s∈V

ζTs Xs(t+ 1)ζs +

N∑
k=t+2

2∑
i=1

Tr(WiXi(k))

(23)
We compute the optimal expected cost-to-go function at

time t by solving the Bellman equation:

E[J(ζ, t)] = min
ϕ

E[xTQx+ uTRu+ J(ζ ′, t+ 1)], (24)

where the ζ ′s are updates of ζs given by equations (7).
Recalling the pairwise independent decompositions of x(t)

and u(t) given by (9) and (10), and the update dynamics (7),
given d(t), we can rewrite (24) as

min
ϕG(d(t))

E[ζTG(d(t))QζG(d(t)) + ϕTG(d(t))RϕG(d(t)) + . . .

(AζG(d(t)) +BϕG(d(t)))
TX ′1,δ,2(AζG(d(t)) +BϕG(d(t)))]

+
∑

r∈V\G(d(t))

min
ϕr

E[ζTr Q
r,rζr + ϕTr R

r,rϕr + . . .

(As,rζr +Bs,rϕr)
TX ′s(A

s,rζr +Bs,rϕr)] + . . .
N∑

k=t+1

2∑
i=1

Tr(WiXi(k))

(25)
where we have once again used X ′s to denote Xs(t+ 1) to
save space.

Standard quadratic minimization yields (15) and (16),
where we adopt the convention that ϕi,δ(t) = 0 if {i, δ} ∈
G(d(t)). Plugging in the computed inputs, and recalling that
ζG(d(t)) can be expanded in terms of ζv , v ∈ G(d(t)), as in
(11), we see that J(ζ, t) has the form

J(ζ, t) =
∑
r∈V

ζTr Xr(t)ζr +

N∑
k=t+1

2∑
i=1

Tr(WiXi(k)) (26)
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(a) Empirical and predicted costs for
d(t+ 1) known.
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(b) Empirical and predicted costs for
d(t+ 1) unknown, but known distribu-
tion on d(t).
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(c) Empirical and predicted costs for
d(t+ 1) unknown and unknown distri-
bution on d(t).

Fig. 3: Empirical and predicted costs for the three classes of delay patterns considered in Section IV.

where the matrices Xr(t) are computed as in (14), with the
exception of X1,δ,2, which is given by the standard discrete
time Riccati recursion

X1,δ,2(t) = Q+ATX1,δ,2(t+ 1)A−ATX1,δ,2(t+ 1)B×
(R+BTX1,δ,2(t+ 1)B)−1BTX1,δ,2(t+ 1)A.

(27)
Noting that this top level recursion is invariant with

respect to the delay regime, we may consider the infinite
horizon solution by letting N →∞. In particular, under the
assumptions made, we have that X1,δ,2(t) converges to the
stabilizing solution of (12), which we denote by X1,δ,2 –
similarly, we denote the the resulting LQR gain by K1,δ,2.

The infinite horizon cost is calculated by noting that, by
the assumption of i.i.d. d(t),

lim
N→∞

1

N

N∑
t=1

2∑
i=1

Tr(WiXi(t)) =

2∑
i=1

Tr(WiEd(t+1)[Xi(t)]).

(28)
Explicitly computing the expectation given the recursions
(14) gives (18).

B. Unknown d(t+ 1)

Based on the previous argument, the dynamic program-
ming argument can be modified to solve for ϕ(t) that are
causal with respect to the delay pattern by treating d(t+ 1)
as a disturbance. In particular, we now take expectations over
both the noise and delay processes, w(t) and d(t+1), in (22)
and (24).

Under our assumptions, we have that for all r ∈ V ,
1) ζr(t) is independent of d(t+ 1) (this follows from the

d(t) being independent).
2) ϕr(t) is now assumed to be causal, and must therefore

be completely determined by ζr(0 : t) and d(0 : t).
This implies that ϕr(t) must be independent of d(t+1).

3) ϕr(t) is, much as in the centralized LQG state feed-
back case, independent of the noise process. This
implies that the control policy, and consequently the
X ′s’s, are independent of the noise process .

This allows us to take expectations with respect to d(t+1)
prior to solving for the optimal inputs ϕr(t), effectively
replacing the X ′s’s in (25), and consequently in (14), with

Ed(t+1)[Xs(t+ 1)], from which Theorem 2 follows immedi-
ately.

In particular, since X1,δ,2 is invariant with respect to delay,
we see that the only change occurs in the recursions for
Xi(t). Letting r = {i}, s = {i, δ}, and V = {1, δ, 2}, we
have that

Xi ≡ Qr,r +As,rTX ′sA
s,r −As,rTX ′sBs,r × . . .

(Rr,r +Bs,rTX ′sB
s,r)−1Bs,rTX ′sA

s,r

(29)
with

X ′i,δ = Ed(t)[Xi,δ(t)] = pX
dji=1
i,δ + (1− p)Xdji=2

i,δ

X
dji=1
i,δ = X

{i,δ},{i,δ}
1,δ,2

X
dji=2
i,δ = Qs,s +AV,sTXVA

V,s −AV,sTXVB
V,s × . . .

(Rs,s +BV,sTXVB
V,s)−1BV,sTXVA

V,s

(30)

VI. CONCLUSION

This paper presented extensions of a Riccati-based solu-
tion to a distributed control problem with communication
delays – in particular, we now allow the communication
delays to be time-varying, but impose that they preserve
partial nestedness. It was seen that the time-varying delay
pattern induces a piecewise linear structure in the resulting
optimal controller, with mode switches being dictated by
both the current and next delay regime. By treating the next
delay regime as a disturbance in the dynamic programming
argument, we derived a hedging-type controller to deal
with this non-causality. Finally, simulations were performed
demonstrating the effectiveness of the proposed method.

Future work will be to extend the results to more general
delay patterns, and removing the assumption of strong con-
nectedness, much as was done in [30] for the case of constant
delays. Additionally, we will seek to relax the assumptions of
independence of d(t), and to deal with the setting in which
NACKs are not present. We are also currently exploring a
principled integration of these results with recent deadline
based coding techniques [27].
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