
Optimal Zero-Queue Congestion Control using ADMM

Nikolai Matni

Abstract— We propose an alternating direction method of
multipliers (ADMM) based solution to a network utility maxi-
mization (NUM) problem, and show that it leads to a protocol
for congestion control that converges rapidly to utility maxi-
mizing transmission rates while guaranteeing zero congestion
throughout the network. Our approach hinges on a novel
decomposition of the NUM problem that leads to easily solvable
iterate update subproblems – we provide closed form solutions
for these subproblems for proportional fairness and minimum
delay fairness utility functions. We further show that this
decomposition lends itself to a distributed implementation that
naturally allows for the generation of a set of feasible transmis-
sion rates at each iteration of the algorithm, thus ensuring that
queues remain empty throughout the network. We formalize
these notions in the form of a congestion control protocol, and
comment on their usefulness and implementation in the context
of recent developments in software defined networking. Finally
we compare the performance of our approach to state-of-the-art
algorithms from the networking and optimization communities
via a datacenter network simulation.

I. INTRODUCTION

A long standing challenge in packet-switched networks is
the rapid convergence of resource allocations. For instance,
in the context of congestion control, a complicating factor
is that decisions and computation are distributed among
endpoints which then vary their transmission rates based
on packet-by-packet feedback from the network (e.g., by
measuring loss, average queue length or round trip time).
This approach to congestion control was given a theoreti-
cal footing via the Network Utility Maximization (NUM)
framework [1], [2], which interpreted these protocols as a
primal, dual, or primal-dual gradient ascent algorithm which
converges to optimal transmission rates which respect the
capacity constraints of the network. However, inherent to
this framework is that capacity constraints must be violated
in order to provide feedback to end-hosts.

With the introduction of software defined networking [3],
which allows for centralized programmatic control of net-
works, and software defined switches [4], which allow for in-
network components to perform non-trivial computation, the
end-point only approach to congestion control is no longer
necessary. In the context of datacenter networks (DCNs),
where physical components are co-located, the end-to-end
principle that proved so powerful in wide are networks
(WANs) seems particularly unnecessary and dated.

Inspired by these developments and observations, as
well as recently proposed “zero-queue” centralized control

N. Matni is with the Department of Control and Dynamical
Systems, California Institute of Technology, Pasadena, CA.
nmatni@caltech.edu.

schemes for DCNs [5], [6], we propose a zero-queue con-
gestion control algorithm based on the Alternating Direc-
tion Method of Multipliers (ADMM) [7]. As we discuss
in Section II-C, ADMM based algorithms are particularly
well suited for congestion control tasks, and as we show
in Section IV, the protocol that we develop is as equally
well suited to distributed implementations in SDN enabled
WANs as it is in DCNs with a centralized controller utilizing
multicore processors.

A. Contributions

We develop a distributed ADMM based algorithm for
congestion control, and show that it converges rapidly to
utility maximizing transmission rates, and guarantees zero
congestion throughout the network. We we provide closed
form solutions to the ADMM iterate update subproblems
for proportional fairness and minimum delay fairness utility
functions, thus allowing for a computationally efficient im-
plementation of the proposed scheme. Further, we show that
the algorithm admits a distributed implementation, making
it well suited to WANs, and that it further allows us to
generate a set of feasible transmission rates at each iteration
of the algorithm, thus ensuring that queues remain empty
throughout the network. We formalize these notions in the
form of a congestion control protocol, and comment on this
protocol’s usefulness and implementation in the context of
recent developments in software defined networking.

B. Comparison to prior work

Augmented Lagrangian inspired congestion control al-
gorithms are not unique to this work. For instance, in
[8], the authors introduce extra dynamics to algorithms
resulting from traditional primal-dual methods to improve
their performance and robustness to in-network delays. The
algorithm developed in this paper is most similar in spirit
to the solution described in [9], where the authors define
the Cluster-ADMM algorithm, and apply it to solving a
NUM problem. Whereas the authors of [9] suggest applying
the Cluster-ADMM algorithm to the the dual of the NUM
problem, we directly tackle the primal problem, which as we
later show, is essential to the zero-queue distributed protocol
that we develop.

C. Paper organization

We introduce and define notation in Section II, as well as
provide an overview of the NUM framework and ADMM.
In Section III, we describe the proposed decomposition of
the NUM problem, and provide closed form solutions to
the iterate update subproblems when utility functions are

chosen to achieve proportional fairness or minimum delay
fairness. We further provide guarantees of convergence of the
algorithm, and propose a simple heuristic for generating a set
of feasible transmission rates at each iteration of the ADMM
algorithm. In Section IV, we discuss how to implement
the proposed algorithm as a distributed congestion control
protocol in SDN enabled WANs, and comment on how one
would adapt this protocol to a centralized controller utilizing
multicore processors, such as those used in SDN enabled
DCNs. In Section V, we compare the transient behavior
of our algorithm to state of the art approaches from the
optimization and networking communities [1], [2], [6], [10],
[11] via a DCN inspired topology in which sources enter and
leave the network stochastically. We end with conclusions in
Section VI.

II. PRELIMINARIES

A. Notation & preliminaries

We consider a network composed of S source-destination
pairs (s, d) connected via a directed graph. We refer to the
edges of this graph as links ` and call intermediary nodes
(i.e., nodes that are not sources or destinations) routers. We
summarize the notation used for other parameters of the
problem in Table I.

TABLE I: Notation used to specify NUM problems

Parameter Notation
source s
destination d
link `
capacity of link ` c`
tx rate at source s rs
utility function at source s Us(rs)
set of sources using link ` S(`)
set of links used by source s L(s)

B. The Network Utility Maximization Framework

The following is modified from [1], [2]. The NUM frame-
work is a convex optimization based approach to solving net-
work resource allocation problems. Many network resource
allocation problems can be formulated as the optimization
of some utility function subject to constraints imposed by
the capacity of the network. In the context of congestion
control, which is the main focus of this paper, one considers
the optimization problem

maximizer≥0
∑S
s=1 Us(rs)

s.t. 1>rS(`) ≤ c`, ∀`,
(1)

where we recall that Us is a (strictly) concave utility function,
rs is the rate of source s, S(`) is the set of sources using
link `, and c` denotes the capacity of link `.

A typical choice for the utility function Us is the weighted
α-fairness utility function given by

Uαs (rs) = ws(1− α)−1r1−αs , (2)

where ws > 0 is a weight, and α ∈ [1,∞] is the fairness
parameter. Three values of α are of particular interest, as they
recover well studied notions of fairness in networks [12]:

• α → 1: in this case, it can be shown that U1
s (rs) =

ws log(rs), which leads to solutions that satisfy pro-
portional fairness;

• α = 2: in this case, U2
s (rs) = −wS/rs, which leads to

solutions that satisfy minimum delay fairness;
• α→∞: choosing a large (infinite) value of α leads to

solutions that approximately (exactly) satisfy max-min
fairness.

A driving motivation behind the NUM framework is that
network structure often leads to decomposability of the
resource allocation problem, allowing for distributed (and
often iterative) algorithms to be used that provably converge
to a globally optimal network state. For instance it was shown
that existing variants of TCP can be viewed as implementing
a distributed gradient ascent algorithm for solving the NUM
problem (1), with various network metrics (delay, queue
length, packet drops) playing the role of lagrange multipliers.
A feature of this approach is that capacity constraints must
be relaxed in order to implement the distributed algorithm
– hence congestion can, and in fact must, occur (i.e., ca-
pacity constraints must be violated) while the algorithm is
converging to the optimal value. While this was a necessary
evil at the time due to the rigidity of network architectures,
with the recent introduction of SDN, more sophisticated
control algorithms can be implemented: as we show in this
paper, by constructing a congestion control protocol around
an ADMM solution to the NUM problem (1), one preserves
the decomposability needed to scale such solutions to large-
scale systems and gains additional features such as improved
convergence properties and congestion free convergence.

C. Alternating Direction Method of Multipliers

The following is adapted from [7]. ADMM is a “meta”-
optimization scheme, where each step is carried out by
solving a convex optimization problem. Consider the opti-
mization problem

minimize f(x) + g(z)
subject to Ax+Bz = c

(3)

over the variables x and z and convex functions f and g.
Define an augmented Lagrangian

Lρ = f(x)+g(z)+λT (Ax+Bz − c)+ρ
2
‖Ax+Bz − c‖22 ,

where ρ > 0 is an algorithm parameter, and λ is the lagrange
multiplier associated with the equality constraint Ax+Bz =
c. The constrained optimization problem is solved through
alternately minimizing the augmented Lagrangian over the
primal variables x, z, and updating the dual variable λ,

xk+1 := argminxLρ(x, z
k, λk)

zk+1 := argminzLρ(x
k+1, z, λk)

λk+1 := λk + ρ
(
Axk+1 +Bzk+1 − c

)
.

(4)

Suppose that optimization problem (3) satisfies the follow-
ing two assumptions:

Assumption 1: The (extended real valued) functions f :
Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed,
proper, and convex.

Assumption 2: The unaugmented Lagrangian has a saddle
point.

Then the following general theorem applies.
Theorem 1 (§3.2.1 of [7]): Let p? denote the optimal

value of optimization problem (3). Given Assumptions 1,
2 then the ADMM iterates satisfy the following:
• Residual convergence: Axk+Bzk−c→ 0 as k →∞,

i.e. the iterates approach feasibility;
• Objective convergence: f(xk) + g(zk) → p? as k →
∞, i.e. the objective function of the iterates converges
to the optimal value;

• Dual variable convergence: λk → λ? as t→∞, where
y? is a dual optimal point.

Why use ADMM for NUM?: In addition to the strong con-
vergence guarantees that ADMM provides, it has other desir-
able properties when used as a congestion control algorithm.
As described in [7], ADMM blends the decomposability of
dual ascent with the superior convergence of the method
of multipliers. Further, in practice, the ADMM algorithm is
often seen to converge to modest accuracy within a few tens
of iterations.

Decomposability is an obvious necessary property for ap-
plying such techniques to congestion control. Further, rapid
approximate optimality is precisely the behavior needed in
an environment where sources enter and leave the network
frequently – in particular, ADMM is particularly well suited
for dynamic environments where obtaining good solutions
quickly is more important than obtaining optimal solutions
slowly. Finally, as we show in §III, the approach that we
propose allows for a set feasible source rates to be rapidly
generated at each iteration of the algorithm, even in a
distributed setting – this in turns allows us to guarantee zero
congestion in the network, which is a desirable property
in DCNs, or when real-time applications (such as video
conferencing) are being run across WANs.

Finally, from an implementation perspective, the introduc-
tion of software defined networks (SDNs) [3], which allow
for centralized real-time programmatic control of a network
(e.g., [5], [6]), as well as software defined switches (SDSs),
such as those that are OpenFlow enable [4], make using such
a protocol a practically meaningful proposition (c.f., Section
IV).

III. USING ADMM TO SOLVE A NUM PROBLEM

We begin by rewriting the NUM problem (1) in the
following ADMM amenable form:

maximizex≥0,{z`}
∑S
s=1 Us(xs)

s.t. 1>z` ≤ c`, ∀`,
xS(`) = z`,∀`.

(5)

Note that we no longer use r to denote the rate vector, as
we wish to reserve this variable for the actual transmission
rates applied at the sources. As we shortly show, both the x
and z variables consist of internal variables to the ADMM
algorithm that need to be suitably manipulated to generate a
set of feasible source rates at each iteration of the protocol.

Thus the iterate update subproblems become:1

xk+1
s = argmax

xs≥0
Us(xs) + xs(

∑
`∈L(s)

λk`,s)

− ρ

2

∑
`∈L(s)

(xs − z`,s)2 (6a)

zk+1
` = arg max

{z` : 1>z`≤c`}
−(λk`)>z` −

ρ

2
‖xk+1

S(`) − z`‖
2
2

(6b)

λk+1
` = λk` − ρ(xk+1

S(`) − z
k+1
`). (6c)

Rewriting the problem as in (5) allows for an intuitive
interpretation of the update subproblems and their corre-
sponding iterates xs, z` and λ`. The x variables are selected
to optimize performance, as is made clear by the objective
function composed of the utility function Us(xs) augmented
with additional terms from the Lagrangian. In contrast, the
z` variables are selected to ensure local feasibility on link
`, as is made clear by the constraint 1>z` ≤ c`. Finally
the Lagrange multipliers {λ`} can be interpreted as the
price of disagreement between the performance variables
x and the feasibility variables {z`}, and hence appear as
correction factors in the objective functions of the x and {z`}
update subproblems to ensure that at optimality these values
coincide. Note that the interpretation of the multipliers {λ`}
is different than that found in the traditional NUM literature
[1], [2] and in [9], where they are interpreted as the cost of
using a link.

A. Convergence properties

Any reasonable choice of utility function Us(xs), such
as α-fair utilities, leads to the NUM problem (1) satisfying
Assumption 1. Further it is easily seen that Slater’s con-
ditions are satisfied for the NUM problem (1), and hence
Assumption 2 is trivially satisfied as well. Thus all of the
guarantees of Theorem 1 – namely residual, objective and
dual variable convergence – hold.

Finally, we note that if Us(xs) is strictly concave over
the feasible set of problem (1) then the NUM problem has
a unique optimal solution. If we further assume them to be
continuous (both properties hold for α-fair utilities), then
Theorem 1 implies that the primal iterates {xks} and {zks }
converge to their optimal values.

B. Closed form solutions to update subproblems

1) Performance variable xs update: Here we show that
for the case of α-fair utility functions, with α ≥ 1 an
integer, the xs iterate update (6a) can be computed by finding
the real positive roots of a polynomial equation, should
they exist. We further show that in the case of α → 1

1Note that the constrained subproblems (6) can be converted to uncon-
strained ones of the form (4) by adding a suitable indicator function to their
objectives.

(proportional fairness) and α = 2 (minimum delay fairness),
the iterate update admits a closed form solution, as in this
case the corresponding polynomial is a quadratic and a cubic,
respectively, which can both be shown to always have a real
positive root.

Lemma 1: Assume that Us(xs) = Uαs (xs) is an α-fair
utility function, with α ≥ 1 an integer. If the polynomial
equation

xα+1
s − 1

|L(s)|

 ∑
`∈L(s)

zk`,s +
1

ρ
λk`,s

xαs −
ws

ρ|L(s)|
= 0,

(7)
has at least one real positive root σ, then it is the only such
real positive root, and xk+1

s = σ.
Proof: We first note that for α ≥ 1, a value of xk+1

s = 0
leads to an objective value of −∞ for the update problem
(6a), hence we can restrict our attention to positive values
xk+1
s > 0. We drop the constraint xs ≥ 0, and differentiate

the objective function of update problem (6a) with respect to
xs, and multiply through by xαs

ρ|L(s)| to obtain the polynomial
(7).

Assume now that polynomial (7) has at least one real
positive root σ, and let R denote the set of such roots.
Seeking a contradiction, assume that |R| > 1, and notice
that any root drawn from this set can be shown to satisfy
the optimality conditions of subproblem (6a). However, the
objective function of subproblem (6a) is strongly concave
over its domain, and hence this subproblem has a unique
optimal solution, leading to a contradiction. Hence if the set
R is non-empty, it must be a singleton given by {σ}, from
which the claim follows.

For the cases of α → 1 and α = 2, the following
corollaries are immediate.

Corollary 1 (Proportional fairness update): For
Us(xs) = ws log(xs), the solution to the x-update
subproblem (6a) is given by:

xk+1
s =

1

2

(√
(bks)

2 + 4
ws

ρ|L(s)|
− bks

)
, (8)

for

bks :=
1

|L(s)|
∑
`∈L(s)

[
zk`,s −

1

ρ
λk`,s

]
.

Proof: Substituting α = 1 into polynomial (7), we
obtain a quadratic polynomial with negative constant term
− ws
ρ|L(s)| . Hence we know that both roots are real, with one

positive and one negative: the update is then obtained by
applying the quadratic formula.

Corollary 2 (Minimum-delay fairness update): For
Us(xs) = −wsxs , the solution to the x-update subproblem
is given by the unique positive root to a cubic polynomial,
which can be computed in closed form using standard
methods.2

2We omit the explicit closed form expression as it is standard but
cumbersome to write.

Proof: Substituting α = 2 into polynomial (7), we ob-
tain a cubic polynomial with negative constant term − ws

ρ|L(s)| .
Hence we know that at least one root is real and positive
(follows from the fact that the leading coefficient is 1, the
constant term is negative, and applying the intermediate value
theorem); from Lemma 1 we conclude that it is unique. The
update is then obtained by applying the cubic formula to
determine this positive real root.

2) Feasibility variable z` update: The z`-update subprob-
lem (6b) is independent of the objective function, and as we
show below, admits a closed form solution.

Lemma 2: The solution to the z`-update subproblem (6b)
is given by:

zk+1
` = xS(`) −

1

ρ

(
pk+1
` 1+ λk`

)
, (9)

where

pk+1
` :=

ρ

|S(`)|

[
1>
(
xk+1
S(`)

1

ρ
λk`

)
− c`

]
+

. (10)

Proof: We write the Lagrangian for the z`-update
subproblem (6b):

L(z`, p
k+1
`) = −(λk`)>z`−

ρ

2
‖xk+1

S(`)−z`‖
2
2+p

k+1
`

(
1>z` − c`

)
(11)

for pk+1
` ≥ 0 the Lagrange multiplier corresponding to the

capacity constraint 1>z` ≤ c`.
Solving ∇z`L(z`, p

k+1
`) = 0 for z` yields the update

expression (9). Substituting this expression into the capacity
constraint 1>z` ≤ c`, we see that it is satisfied if and only
if

pk+1
` ≥ ρ

|S(`)|

[
1>
(
xk+1
S(`)

1

ρ
λk`

)
− c`

]
. (12)

It can further be checked via direct substitution of (9) into
the objective function of the z`-update subproblem (6b) that
one should select pk+1

` ≥ 0 as small as possible. This fact
combined with inequality (12) yields the expression (10).

C. Feasible set of transmission rates at each iteration

We now show that the chosen problem decomposition (5)
naturally allows for a feasible set of transmission rates {rs}
to be generated at each iteration of the algorithm. This is
particularly appealing in both datacenter networks (DCN)
and real-time applications (such as video streaming), as it
guarantees that all queues within the network are empty
under normal operating conditions (i.e., barring any faults
within the network).

In particular, for each link ` at iteration k, we define the
modified locally feasible variable z̃k` as follows:

z̃k` :=

{
zk` if zk` ≥ 0
c`
|S(`)|1 otherwise

(13)

We require this auxiliary variable because we cannot guar-
antee that the variable zk` is non-negative at each iteration
k. Note that when zk` is not non-negative, any feasible value

z̃` can be chosen – that proposed in (13) is just one such
choice.

We then have the following useful property:
Lemma 3: At iteration k, define the transmission rate rs

at source s to be

rks := min
`∈L(s)

z̃k`,s. (14)

We then have that rk = (rks)
S
s=1 defines a set of transmission

rates that are a feasible solution to the NUM optimization
problem (1).

Proof: We first note that rk ≥ 0 by construction. Thus it
suffices to show that for any link `, it holds that 1>rkS(l) ≤ c`.
This follows immediately from the definition of rks given in
(14), which implies that 1>rkS(l) ≤ 1>z̃k` ≤ c`.

IV. OPTIMAL ZERO-QUEUE CONGESTION CONTROL

In this section we propose a distributed congestion control
algorithm, based on the ADMM approach developed in the
previous Section, that satisfies the following properties:

1) The source transmission rates {rs} converge to the
optimal solution to the NUM problem (1);

2) All iterates {rks} define a set of feasible transmission
rates – hence the congestion control algorithm leads to
zero-queuing in the network.

This section assumes familiarity with the basics of TCP
implementation at the packet-level.

We assume the following distribution of computation
throughout the network: each source s is responsible for
computing its xs iterate, and each router is responsible for
computing the z` and λ` iterates for all of its outgoing links
`. We outline below components of our distributed protocol,
and summarize the discussion in pseudo-code – in all of
the following we assume that an initial SYN, SYN/ACK,
ACK handshake has been performed between each source-
destination pair.

Updating xs iterates at source s: In order to compute
its xk+1

s update, each source s must solve the polynomial
equation (7). In order to do so, it needs access to the
sum

(∑
`∈L(s) z

k
`,s +

1
ρλ

k
`,s

)
– this sum can be computed

along the path used by source s by having each router
increment a counter included in a control packet transmitted
by the source3 that is then returned to the source by the
destination host via an acknowledgement packet containing
the computed sum.

Updating z` and z̃` iterates at router: In order to compute
its zk+1

` update, each router must evaluate expressions (9)
and (10). To do so, each router must maintain variables zk`
and λk` for each of its outgoing links, as well as a local copy
of xk+1

S(`) for each outgoing link `, that is a vector of the xs
values for each source s using one of its outgoing links `.
Therefore we propose that each source s include its iterate

3This can either be included as a field in the header of a data packet, or
as a field in a control packet – in the data packet case, this header is left
empty unless the ADMM algorithm is beginning its next iteration. In the
interest of clarity, we restrict our discussion to the control packet case.

Algorithm 1 Optimal Zero-Queue Congestion Control
initialize: iterate k = 1;
values {r1s = 0}, {z1` = 0}, {λ1` = 0}, {c1s = 0}
while true do

foreach source s do
update xk+1

s and rk+1
s

receive ack packet and transmit at feasible rate
rks ;
read sum counter cks =

(∑
`∈L(s) z

k
`,s +

1
ρλ

k
`,s

)
;

use cks to compute solution to xs-update subprob-
lem (6a), and update xk+1

s ;
end
transmit control packet

set the following fields in control packet:
• counter ck+1

s = 0;
• feasible rate rk+1

s = +∞;
• xs-field = xk+1

s ;
and transmit to destination d;

end
end
foreach link ` do

wait until xk+1
S(l) received;

update zk+1
` , z̃k+1

` and λk+1
`

update zk+1
` and z̃k+1

` using expressions (9), (10)
and (13);
update λk+1

` according to expression (6c);
end
update packet fields

foreach source s ∈ S(`) do
increment counter ck+1

s = ck+1
s + zk+1

`,s +
1
ρλ

k+1
`,s ;

set rk+1
s = min

[
rk+1
s , z̃k+1

`,s

]
;

end
end

end
foreach destination d do

wait to receive control packet from source s;
transmit ack packet containing counter ck+1

s and
feasible source rate rk+1

s ;
end
increment k = k + 1;

end

update xk+1
s in a field of the control packets that it transmits,

allowing the corresponding local record xk+1
S(`) to be populated

and/or updated . Once zk+1
` has been computed, it is trivial

to update z̃k+1
` according to equation (13).

Updating λ` iterates at router: In order to compute its
λk+1
` update, each router must evaluate the update equation

(6c). Given the suggested protocol for the z` update, the
necessary elements zk+1

` , xk+1
S(`) and λk` are locally available.

Updating feasible rate rs: Recall that rk+1
s is specified by

the minimum value of z̃k+1
`,s along the path of source s, as

specified in expression (14). This minimum can be computed

by including a field in the control packets transmitted by
each source s, with an initial value of infinity, and updating
it at each hop by taking the minimum of the value of this
field and the local feasible copy z`,s. The final feasible rate
update rk+1

s value is then returned by the destination via the
aforementioned acknowledgement packet.

Algorithm 1 presents pseudo-code for one iteration of the
proposed protocol.

A. Asynchrony and centralized implementations

We note that implicit in the above algorithm is that all
source rates can synchronize their transmission rate updates,
as otherwise, we cannot guarantee the desired zero-queue
property. Whereas such synchronization in source rate up-
dates can be challenging in a distributed setting, it is not
unreasonable in a SDN setting. In particular, consider an
architecture wherein the xs and rs updates are computed
by a centralized controller and then transmitted to sources –
exactly such an architecture has been successfully applied in
the context of datacenter networks [5], [6]. Furthermore, the
distributed implementation discussed above also suggests a
natural parallelization scheme for a centralized implementa-
tion on a multi-core CPU or GPU. Finally, if we are willing
to relax the zero-queue property, it will be interesting to
explore the application of asynchronous ADMM algorithms
(e.g., those described in [13]–[15]) in this context.

V. A DATACENTER NETWORK EXAMPLE

Setup: We follow the simulation setup described in [6].
The topology is a two-tier full-bisection topology with 4
spine switches connected to 9 racks of 16 servers each,
where server are connected with a 10 Gbits/s link. To model
micro-bursts, flows follow a Poisson arrival process, with job
sizes distributed according to the Web workloads published
by Facebook [16]. The Poisson rate at which flows enter
the system is chosen to reach a 70% average server load,
where 100% load is when the rate equals server link capacity
divided by the mean flow size. Sources and destinations are
chosen uniformly at random, and we assume that there are
initially 512 flows in the network. We pick a proportional
fairness utility function with uniform weight, i.e., Us(rs) =
log rs for all sources s. We use a constant value of ρ = .1
throughout.

Results: Illustrated in Figure 1 are results from a typical
trace generated by the algorithm. We compare the ADMM
based algorithm to Gradient Ascent (Grad) [1], [2], Fast
Weighted Gradient Method (FGM) [10] and Netwon Exact
Diagonal [6], which is a modification of the Netwon-like
method proposed in [11].

Figures 1a) and 1b) show the number of congested links
and the maximum ratio rs/c` of transmission rate over
link capacity achieved by each algorithm, respectively As
expected, the ADMM algorithm has zero congested links
throughout, and interestingly, always fully utilizes the net-
work in the sense that there always exists a link ` such that∑
s∈S(`) rs/c` = 1.

In order to fairly compare the transient performance of
these algorithms, we adopt the methodology proposed in [6],
wherein at each iteration the set of rates specified by an
algorithm is renormalized to be feasible, while ensuring that
there exists at least one link ` such that

∑
s∈S(`) rs/c` = 1.

We note that in this case, the transmission rates generated
by the ADMM algorithm are not renormalized because they
are by construction feasible. In Figures 1c) and 1d) we
compare the utility and total throughput achieved by the
renormalized outputs of each algorithm (note that we omit
Grad from Fig. 1c) because it is significantly outperformed
by the other algorithms). As can be seen, the ADMM
algorithm leads to significantly higher proportional fairness
while simultaneously maintaining a higher total throughput.

VI. CONCLUSION

This paper proposed a protocol for congestion control
based on ADMM, and showed that it converges rapidly
to utility maximizing transmission rates while guarantee-
ing zero congestion throughout the network. Our approach
hinges on a novel decomposition of the NUM problem that
leads to ADMM subproblems with closed form solutions and
that naturally lends itself to a distributed implementation.
We described a distributed implementation of this congestion
control protocol and showed that it is well suited to both SDN
enabled WANs as well as SDN controlled DCNs. Finally we
demonstrated via a DCN simulation that the ADMM based
algorithm significantly outperforms the state-of-the-art.

REFERENCES

[1] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as
optimization decomposition: A mathematical theory of network ar-
chitectures,” Proc. of the IEEE, vol. 95, no. 1, pp. 255–312, Jan 2007.

[2] D. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” Selected Areas in Communications,
IEEE Journal on, vol. 24, no. 8, pp. 1439–1451, Aug 2006.

[3] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[5] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized "zero-queue" datacenter network,” in
Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 307–318.
[Online]. Available: http://doi.acm.org/10.1145/2619239.2626309

[6] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control
for datacenter networks,” MIT CSAIL Technical Report, 2016.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends R© in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[8] X. Zhang and A. Papachristodoulou, “Improving the performance
of network congestion control algorithms,” IEEE Transactions on
Automatic Control, vol. 60, no. 2, pp. 522–527, Feb 2015.

[9] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel,
“Distributed ADMM for model predictive control and congestion
control,” in 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), Dec 2012, pp. 5110–5115.

[10] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle, “An o(1/k) gradient
method for network resource allocation problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 64–73, March 2014.

a)	number	of	congested	links	

b)	maximum	ra5o	of	rate/capacity	

c)	comparison	of	renormalized	u5lity	

d)	comparison	of	renormalized	throughput	

Fig. 1: Results for the simulation example described in Section V. Figures 1a) and 1b) respectively show the number of congested links and the maximum
exceeded capacity ratio

∑
s∈S(`) rs/c`, respectively. As can be seen, the ADMM algorithm leads to zero congested links, and full network utilization, i.e.,

max`
∑
s∈S(`) rs/c`=1/c` = 1. Figures 1c) and 1d) compare the utility and total throughput achieved by each algorithm (we omit Grad from Fig. 1c)

because it is significantly outperformed by the other algorithms), where all non-ADMM based algorithms have their throughputs renormalized to ensure a
feasible solution (c.f., [6] for more details). As can be seen, the ADMM algorithm leads to significantly higher proportional fairness while maintaining a
higher total throughput.

[11] S. Athuraliya and S. H. Low, “Optimization flow control
with Newton-like algorithm,” Telecommunication Systems,
vol. 15, no. 3, pp. 345–358, 2000. [Online]. Available:
http://dx.doi.org/10.1023/A:1019155231293

[12] R. Srikant, The mathematics of Internet congestion control. Springer
Science & Business Media, 2012.

[13] R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for
consensus optimization.” in ICML, 2014, pp. 1701–1709.

[14] T. H. Chang, M. Hong, W. C. Liao, and X. Wang, “Asynchronous
distributed alternating direction method of multipliers: Algorithm and
convergence analysis,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp.
4781–4785.

[15] E. Wei and A. Ozdaglar, “On the O(1=k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Global
Conference on Signal and Information Processing (GlobalSIP), 2013
IEEE, Dec 2013, pp. 551–554.

[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 123–137, Aug. 2015. [Online].
Available: http://doi.acm.org/10.1145/2829988.2787472

