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Abstract

The controller of a large-scale distributed system (e.g., the internet, the power-grid and au-
tomated highway systems) is often faced with two complementary tasks: (i) that of finding an
optimal trajectory with respect to a functional or economic utility, and (ii) that of efficiently
making the state of the system follow this trajectory despite model uncertainty, process and
sensor noise and distributed information sharing constraints. While each of these tasks has
been addressed individually, there exists as of yet no controller synthesis framework that treats
these two problems in a holistic manner. This paper proposes a unifying optimization based
methodology that jointly addresses these two tasks by leveraging the strengths of well estab-
lished frameworks for distributed control: the Layering as Optimization (LAO) framework and
the distributed optimal control framework. We show that our proposed control scheme has
a natural layered architecture composed of a low-level tracking layer and top-level planning
layer. The tracking layer consists of a distributed optimal controller that takes as an input
a reference trajectory generated by the top-level layer, where this top-level layer consists of a
trajectory planning problem that optimizes a weighted sum of a utility function and a “tracking
penalty” regularizer. We further provide an exact solution to the tracking layer problem under
a broad range of information sharing constraints, discuss extensions to the proposed problem
formulation, and demonstrate the effectiveness of our approach on a numerical example.

1 Introduction

Distributed systems such as software defined networks, power-grids and the human sensorimotor
control system present a unique challenge to the control engineer. When controlling or reverse
engineering these often large-scale systems, we are faced with two complementary tasks: that of
finding an optimal trajectory (or set-point) with respect to a functional or economic utility, and
that of efficiently making the state of the system follow this optimal trajectory (or set-point) despite
model uncertainty, process and sensor noise and information sharing constraints.

Layering has proven to be a powerful architectural approach [1] to designing such large-scale con-
trol systems – indeed, layered architectures are ubiquitous in the internet [2,3], modern approaches
to power-grid control [4,5], and biological systems [6,7]. In the context of engineering systems, the
layering as optimization (LAO) (cf. [2, 3] and references therein) and the reverse/forward engineer-
ing (cf. [4, 5] and references therein) paradigm have been particularly fruitful in tackling internet
∗N. Matni & J. C. Doyle are with the Department of Control and Dynamical Systems, California Institute of

Technology, Pasadena, CA. {nmatni,doyle}@caltech.edu. This research was in part supported by NSF NetSE,
AFOSR, the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research
Office, and from MURIs “Scalable, Data-Driven, and Provably-Correct Analysis of Networks” (ONR) and “Tools for
the Analysis and Design of Complex Multi-Scale Networks” (ARO). The content does not necessarily reflect the
position or the policy of the Government, and no official endorsement should be inferred.

1



and power-grid control problems, respectively. Both of these frameworks can be loosely viewed as
using the dynamics of the system to implement a distributed optimization algorithm, ensuring that
the state of the system converges to a set-point that optimizes a utility function. These approaches
can scale to large systems by taking advantage of the structure underlying the utility optimization
problem, and can simultaneously identify and guarantee stability around an optimal equilibrium
point.

A complementary and somewhat orthogonal approach to the control of large scale systems is
that considered in the distributed optimal control literature [8,9]. In such problems, the assumption
is that the optimal set-point has already been specified, and the objective is rather to bring the
state of the system to this set-point and keep it there as efficiently as possible, despite disturbances
and information sharing constraints between actuators, sensors and controllers. Such approaches
are not necessarily scalable, although recent developments [10, 11] are aimed at addressing this
limitation, but do fully utilize knowledge of the system dynamics and information sharing constraints
to guarantee optimal transient behavior around a pre-specified equilibrium point. This area has seen
an explosion of results in the past decade, making it impossible to provide a proper review of the
literature in the space available. We instead point the reader to the recent survey paper [9] for an
overview of the challenges related to distributed optimal controller synthesis, and later introduce
necessary concepts and specific results as they are needed.

From this brief discussion, it is apparent that these two frameworks are complementary in their
strengths and weaknesses. For instance, although the LAO framework is extremely flexible and
scales seamlessly to large systems, it is not naturally able to accommodate process or sensor noise,
nor does it penalize undesirable transient behaviors. On the other hand, the distributed optimal
control framework naturally handles process and sensor noise and penalizes undesirable transient
behaviors – however, it is very limited in the types of cost-functions that it can accommodate, and
an optimal set-point must be pre-specified.

This complementarity in strengths and weaknesses is the motivation behind this paper. Our
main contribution is a unifying optimization based methodology that naturally combines the advan-
tages of the LAO and distributed optimal control frameworks, allowing for each of their strengths to
be leveraged together in a principled way. In particular, we define a dynamic version of the utility
optimization problems typically considered in the LAO setting, and show that via a suitable relax-
ation of the problem, a layered architecture naturally emerges. This architecture has two layers: a
tracking layer and a planning layer (cf. Fig. 1). The low-level tracking layer consists of a distributed
optimal controller that tracks a reference trajectory generated by the top-level planning layer, where
this top layer consists of a trajectory planning problem that optimizes a weighted sum of a utility
function and a “tracking penalty” regularizer. We then show how the tracking layer problem can be
solved exactly under interesting information sharing constraints by leveraging existing results from
the distributed optimal control literature.

This paper is organized as follows: we formulate a dynamic version of a utility maximization
problem in §2 and show how various problems considered in the literature can be obtained as
a special case. In §3, we show that through a suitable relaxation, a natural layered architecture
arises, in which the bottom layer consists of a distributed optimal control problem, and the top layer
consists of a “tracking regularized” trajectory planning problem. In §4, we give an explicit solution
to our relaxed problem when the distributed optimal control problem satisfies certain information
sharing constraints and is formulated with respect to an LQG-like cost function. In §5, we discuss
several extensions to the basic problem formulated in §2 and §3 – due to space limitations we only
briefly outline these extensions, but make sure to highlight what technical challenges, if any, remain
to be solved. We end with a numerical example in §6.
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Notation

For a sequence of vectors xt ∈ Rn, t = 0, . . . , N , we use x0:N to denote the signal (xt)
N
t=0. Similarly,

given a sequence of matricesMt, t = 0, . . . , N , and a sequence of vectors xt of compatible dimension,
we use M0:N · x0:N to denote the signal (Mtxt)

N
t=0. We use Z to denote the block upshift matrix,

that is to say a block matrix with identity matrices along the first block super-diagonal, and zero
elsewhere. Similarly, we use Ei to denote a block column matrix with the ith block set to identity,
and all others set to 0. Finally, In denotes the n × n identity matrix. Unless required for the
discussion, we do not explicitly denote dimensions and we assume that all vectors, operators and
spaces are of compatible dimension throughout.

2 Problem Formulation

Consider linear dynamics described by

xt+1 = Atxt +Btut +Htwt, zt = Ctxt, x0 given (1)

where xt is the state of the system at time t, zt is the controlled output, wt is the process noise
driving the system, ut is the control input, and x0 is a known initial condition. As of yet, we only
restrict any realization of the disturbance signal w0:N to be in `∞.

We assume that the plant described by the dynamics (1) is distributed and composed of p
subsystems. To each subsystem we assign a corresponding subset xit, uit, wit and zit of the signals
described in (1), corresponding to the state, control action, process noise and controlled output at
subsystem i. We assume that the matrices Bt, Ht and Ct are block-diagonal,1 and that each At
admits a compatible block-wise partition (Aijt ). We then have that the dynamics at subsystem i
are described by

xit+1 = Aiit x
i
t +
∑

j:Aij 6=0A
ijxjt +Bii

t u
i
t +H ii

t wt,

zit = Ciit x
i
t.

(2)

In this paper we consider control tasks with respect to non-traditional cost functions, as specified
in optimization problem (5), subject to information sharing constraints. In order to impose such
information sharing constraints, we define the information set Iit available to a controller at node i
at time t as

Iit :=
{
x10:t−τi1 , x

2
0:t−τi2 , . . . , x

i
0:t, . . . , x

p
0:t−τip

}
, (3)

where τij is the communication delay from subsystem j to subsystem i.2 We then say that a control
law ut respects the information sharing constraints of the system if the control action uit taken
at time t by subsystem i is a function of the information set Iit , i.e., if there exists some Borel
measurable map γit such that

uit = γit
(
Iit
)

(4)

for each subsystem i. We focus in particular on partially nested [12] information structures, which
satisfy the important property that for every admissible control policy γ, whenever uis affects Ijt , we
then have that Iis ⊆ Ijt . This property implies that a class of distributed optimal control problems
admits a unique optimal policy that is linear in its information set: we build on this to prove our
main technical result in §4.

1These assumptions can be relaxed for some of the distributed controller synthesis methods referenced in Table 1.
2We define the information sets with a state-feedback setting in mind: the definition extends in a natural way to

the output feedback setting by replacing the state x with the measured output y.
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The control task that we are interested in solving is specified by the following optimization
problem

minimize
x0:N ,u0:N−1

C (z0:N ) + ‖D0:N−1 · u0:N−1‖w
s.t. dynamics (1), distributed constraints (4), z0:N ∈ R

(5)

where C (·) is a convex cost function, D0:N is a collection of matrices Dt satisfying D>t Dt � 0,
‖·‖w is a suitable signal-to-signal penalty such as Ew‖ · ‖22 (corresponding to an LQG like penalty if
the disturbances wt are taken to be jointly Gaussian), max‖w‖`2≤1 ‖ · ‖

2
2 (corresponding to an H∞

like penalty) or max‖w‖`∞≤1 ‖ · ‖∞ (corresponding to an L1 like penalty), and R defines a convex
constraint set on the controlled output z0:N .

The interpretation of this problem is straightforward: select a state trajectory x0:N that opti-
mizes the cost function C (·) and that respects the constraint z0:N ∈ R, that can be achieved with
a reasonable control effort despite the dynamics and information sharing constraints of the system.
As we describe in more detail in what follows, existing tools from distributed (layering as) opti-
mization and distributed optimal control are able to address different special cases of this problem,
but as of yet, no framework exists that satisfactorily combines the tools developed in each of these
approaches. The goal of this paper is to propose such a framework, allowing for the flexibility and
scalability of LAO to be combined with the desirable transient behavior achieved by distributed
optimal controllers, thus the broadening collective scope and applicability of these approaches.

We begin by highlighting special cases of problem (5) that can be solved using existing controller
synthesis frameworks.

No dynamics or control cost

If the dynamic constraint (1) and the control cost ‖D0:N · u0:N−1‖w are removed from optimization
problem (5), it reduces to a static optimization problem in the variable x0:N . The layering as
optimization (LAO) framework (cf. [2,3] and references therein) and the forward/reverse engineering
framework (cf. [4, 5] and references therein) have proven to be powerful tools in controlling large
scale systems by using system dynamics to solve such a static optimization problem in a scalable
way. In particular, under suitable and somewhat idealized conditions (namely in the absence of
noise), these methods provably converge to an optimum of the original optimization problem. The
resulting control schemes should thus be viewed as stabilizing controllers around such an optimal
equilibrium point. It is worth noting however that since the dynamics of the system are not explicitly
considered in the optimization problem, this framework does not optimize the trajectory taken by
the system to reach this optimal equilibrium point.

No state constraints and control theoretic cost function

If the output constraints z0:N ∈ R are dropped from optimization problem (5), and the cost function
C (·) is taken to be a suitable control theoretic cost such as the LQG or H∞ cost function, then this
reduces to a distributed optimal control problem [8,9,13]. If the information constraints are such that
the resulting control problem is partially nested (alternatively quadratically invariant) [8, 9, 12, 14],
then one may solve for the resulting linear distributed optimal controller in many cases of interest
(we highlight such cases in §4) by leveraging recent results from the distributed optimal control
community [15–18]. A limitation of this approach is that it only applies to a few cost functions, all
of which can only be applied to systems that have a pre-specified equilibrium point.
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No information sharing constraints and no driving noise

If the information sharing constraints uit = γit(Iit) are removed from optimization problem (5) and
the driving noise w0:N−1 is set to 0, the resulting optimization problem is identical to subproblems
solved in the context of model predictive control (MPC) (cf. [19] and references therein). Although
extensions of model predictive control to distributed settings do exist (cf. [20] and references therein),
they are not as flexible in dealing with information sharing constraints as analogous results in the
distributed optimal control literature, especially in the output feedback setting. However, a major
advantage of MPC is its ability to naturally accommodate nonlinearities, and in particular actuator
saturation – extending the applicability of our framework to nonlinear systems by incorporating it
into the MPC scheme is thus an important avenue for future work, but will not be discussed here.

In light of the previous discussion, the conceptual challenge that needs to be overcome in solving
optimization problem (5) is that we need to simultaneously identify an optimal trajectory and ensure
that the system can effectively track this trajectory despite the system dynamics (1), the control
cost ‖D0:N−1 · u0:N−1‖w, the information sharing constraints (4) of the controller and the driving
noise of the system. In what follows, we propose a relaxation based approach inspired by the notion
of vertical layering in the LAO framework to functionally separate the tasks of planning an optimal
trajectory and efficiently tracking it. This separation allows for the tracking problem to be solved as
a traditional distributed optimal control problem, independent of the planning problem: when the
tracking problem admits an analytic solution, it follows that optimization problem (5) then reduces
to a suitably modified planning problem in which the tracking cost acts as a regularizer. We make
this intuition precise in the next section.

3 Vertical Layering with Dynamics

Our goal is to create a separation between the tasks of planning an optimal trajectory and synthe-
sizing a controller that ensures that the state of the system efficiently tracks said trajectory. To that
end, we propose the following relaxation to optimization problem (5): we introduce a redundant
“reference” variable r0:N constrained to satisfy C0:N · r0:N = z0:N , and we then relax this equal-
ity constraint to a soft constraint in the objective function of the problem. The resulting relaxed
optimization problem is then given by

minimize
r0:N

C (C0:N · r0:N )

s.t. C0:N · r0:N ∈ R
+

Tracking Problem︷ ︸︸ ︷
minimize
x0:N ,u0:N−1

∥∥∥∥ρC0:N · (x0:N − r0:N )
D0:N−1 · u0:N−1

∥∥∥∥
w

s.t. dynamics (1)
distributed constraints (4)

(6)

where ρ > 0 is the tracking weight. This relaxation achieves our desired goal of separating the plan-
ning problem from the tracking problem: in particular, for a fixed r0:N the right most optimization
problem, labeled as “Tracking Problem” in optimization problem (6), is completely independent of
the cost function C (·) and the constraint set R.

Remark 1 Note that with this relaxation, we can no longer guarantee that the state trajectory
satisfies C0:N · x0:N ∈ R. Although this may seem unsatisfying, it is worth noting (i) that relaxing
state constraints in this way is a standard approach in the LAO framework; (ii) that the optimal
reference trajectory satisfies C0:N ·r0:N ∈ R; and (iii) that under nominal operating conditions (i.e.,
for the noise w0:N set to 0), we have that C0:N · x0:N ≈ C0:N · r0:N for sufficiently large ρ.
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3.1 A Layered Architecture

Assume that for a fixed reference trajectory r0:N that the tracking problem specified in optimization
problem (6) admits an analytic solution such that its objective at optimality is given by a function
f track
ρ (r0:N ) that is convex in r0:N , and further assume that we can compute the optimal feedback
policies γit such that the controller achieving the tracking cost f track

ρ (r0:N ) can be implemented as
a function of the reference trajectory r0:N . We may then rewrite optimization problem (6) as

minimize
r0:N

C (C0:N · r0:N ) + f track
ρ (r0:N ) s.t. C0:N · r0:N ∈ R. (7)

Optimization problem (7) has an appealing architectural interpretation, as illustrated in Figure
1. The low-level tracking layer consists of the distributed optimal controller in feedback with the
distributed plant, and drives the evolution of the system to match that specified by the reference
trajectory received from the planning layer above. In order to determine this reference trajectory,
the planning layer optimizes the weighted sum of a utility cost function C and a tracking penalty
f track
ρ . The tracking penalty f track

ρ should be interpreted as a model or simulation of the tracking
layer’s response to a given reference trajectory r0:N . By replacing the explicit dynamic constraints
(1) with the function f track

ρ , which captures the behavior of the optimal closed loop response of the
system, optimization problem (7) is now static. The static nature of the problem implies that much
as in the LAO framework, well established distributed optimization techniques can be applied to
solve it. Furthermore, as the reference trajectory r0:N is now a virtual quantity, we are not limited
to using the system dynamics to implement an optimization algorithm, potentially allowing for more
sophisticated methods to be used.

In the next section, we present a class of problems for which the prerequisite analytic expressions
for f track

ρ and γit can be obtained using existing methods from the traditional and distributed optimal
control literature.

4 Tracking Problems with Analytic Solutions

In this section we focus on a tracking problem with a LQG like cost-function that is subject to
centralized reference information constraints and distributed state information constraints. We
make precise what these information sharing constraints mean and show that in this setting, the
optimal tracking policy is unique and linear in its information, and can be constructed using existing
results from the distributed optimal control literature. We defer a discussion of alternative noise
assumptions, performance metrics, and more complex reference information constraints to §5.

We take the disturbances wt to be identically and independently drawn from a zero mean normal
distribution with identity covariance, i.e., wt

i.i.d.∼ N (0, I), and use the mean square error signal-to-
signal metric, i.e., ‖z0:N‖w =

∑N
t=0 Ew‖zt‖22. Let et := xt− rt denote the tracking error between the

state xt and the reference rt, and let r>t :=
[
r>t r>t+1 · · · r>N 0> · · · 0>

]
∈ R1×Nn be a suitably

zero-padded stacked vector of references rt:N . Letting

Ãt :=

[
At (AtE

>
1 − E>2 )

0 Z

]
, B̃t :=

[
Bt
0

]
, H̃t :=

[
Ht

0

]
,

we can then rewrite the Tracking Problem specified in optimization problem (6) in terms of et and
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Distributed Controller
ui

t = �i
t(Ii

t)

Distributed Plant
xt+1 = Atxt + Btut + Htwtwt

r0:N

ut

x
t �

r
t

Tracking Layer

Planning Layer
Cost function + Internal Model

minimize
r0:N

C (C0:N · r0:N ) + f track
⇢ (r0:N )

s.t. C0:N · r0:N 2 R.

Figure 1: Layered architecture obtained through our proposed relaxation based solution to opti-
mization problem (5). The architecture has two layers, a low-level tracking, or reflex, layer, and a
high-level planning layer. Whereas the tracking layer is cost-function-agnostic, the planning layer
possesses an internal model of the tracking layer’s ability to follow a given reference trajectory.
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rt as
minimize
e0:N ,u0:N

∑N−1
t=0 Ew

[
e>t Qtet + u>t Rtut

]
+

Ew
[
e>NQNeN

]
s.t.

[
et+1

rt+1

]
= Ãt

[
et
rt

]
+ B̃tut + H̃twt

e0 and r0 given, uit = γit(Iit ∪ J it ) for all i,

(8)

where Qt := ρC>t Ct and Rt := D>t Dt.
Here the state information set Iit available to node i at time t is specified by (3), and the

corresponding reference information set J it is specified by

J it :=
{
r10:t−κi1 , r

2
0:t−κi2 , . . . , r

i
0:t, . . . , r

p
0:t−κip

}
(9)

where κij is the reference communication delay from node j to node i. We allow for κij ≤ τij ,
i.e., for the stacked reference trajectory rt to possibly be communicated faster than states xt of the
system, so that we may accommodate cases in which reference following is performed in a centralized
manner but disturbance rejection is performed in a distributed manner.

In this section, we assume that information available to the planning layer is globally available to
the tracking layer, i.e., we assume that J it = {x0, r0:t} for all sub-controllers i, but that information
pertaining to the state, i.e., Iit , is constrained as in (3) but partially nested [12]. As stated in
the following theorem, these assumptions on the information sharing constraints coupled with the
choice of a quadratic objective function imply that the optimal control policies γit exist, are unique,
and are linear in their information sets. We then use this result to show that a separation principle
exists, allowing us to decompose the control task into two independent subproblems: a reference
following problem and a disturbance rejection problem.

Theorem 1 Consider optimization problem (8), and suppose that J it = {x0, r0:t} and that Iit de-
fines a partially nested information sharing constraint. Then the optimal control policies γit exist,
are unique, and are linear in their information set.

Proof: See Appendix.

An analogous result is proved in [12] for distributed control problems with a quadratic objec-
tive, and initial conditions and disturbances drawn from zero mean Gaussian distributions. In the
tracking problem (8), the initial conditions e0 and r0 are nonzero and deterministic, and hence the
proof needs to be suitably modified to accommodate this fact. Intuitively, the argument of [12]
applies here because we assume that the nonzero initial conditions e0 and r0 are globally known,
and hence the effect of the initial conditions can be computed by each sub-controller, returning us
to the zero mean setting.

Exploiting the linearity of the optimal policies, we show in the Appendix that we can then
decompose the error state et into a deterministic component dt and a centered stochastic component
st that obey the following dynamics:

dt+1 = Ãtdt + B̃tµt, d0 =

[
e0
ro

]
(10a)

st+1 = Ãtst + B̃tνt + H̃twt, s0 = 0 (10b)[
et
rt

]
= st + dt. (10c)
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where µt is a linear map acting on the globally available deterministic information set Dt = {d0:t}
and νt is a linear map with components νit satisfying νit = νit(Sit), with the stochastic information
set Sit available to node i at time t specified by

Sit :=
{
s10:t−τi1 , s

2
0:t−τi2 , . . . , s

i
0:t, . . . , s

p
0:t−τip

}
. (11)

Notice in particular that the delays specifying the information sharing constraints in Sit are inherited
from the state information sharing constraints as specified in equation (3). Further, for all t ≥ 0, it
holds that E[st] = 0 and consequently that E[dts

>
t ] = 0. The following Corollary is then immediate.

Corollary 1 Suppose that the assumptions of Theorem 1 hold. Then the tracking problem (8) can
be decomposed into a reference following problem (RFP)

minimize
d0:N ,µ0:N

∑N−1
t=0 d>t Qtdt + µ>t Rtµt + d>NQNdN

s.t. dynamics (10a), µt = µt(Dt),
(RFP)

and a disturbance rejection problem (DRP)

minimize
s0:N ,ν0:N

∑N−1
t=0 E

[
s>t Qtst + ν>t Rtνt

]
+ E

[
s>NQNsN

]
s.t. dynamics (10b), νit = νit(Sit) for all i.

(DRP)

The consequences of this corollary are profound – in particular, notice that the disturbance
reference problem (DRP) is independent of the the reference trajectory rt. This implies that the
tracking penalty f track

ρ to be used in the planning layer optimization problem (7) is completely
specified by the optimal cost of the reference following problem (RFP), which is easily seen to be a
standard centralized linear quadratic regulator (LQR) problem. We therefore have that the optimal
tracking cost is given by

f track
ρ (r0:N ) =

[
x0 − r0

r0

]>
P0

[
x0 − r0

r0

]
, (12)

and achieved by the policy µt = −Ktdt, for Pt and Kt specified by the Riccati recursions

Pt = Ã>t

[
Qt 0
0 0

]
Ãt − Ã>t Pt+1B̃tKt, PN =

[
QN 0
0 0

]
,

Kt =
(
Rt + B̃>t Pt+1B̃t

)−1
B̃>t Pt+1Ãt.

(13)

Finally, the optimal control policies νit for the disturbance rejection problem (DRP) can be
computed for many interesting information patterns using existing results from the classical and
distributed optimal control literatures – a selection of relevant results are listed in Table 1. The
resulting optimal costs change as a function of the information constraints of the system, but they
are independent of the reference trajectory r0:N and do not affect the planning optimization problem
(7).

5 Discussion

This section provides a brief discussion of useful extensions of the results presented thus far. It is
impossible to cover these extensions in detail due to length constraints: instead, we motivate and
pose the relevant problems, sketch possible solutions and highlight the technical challenges, if any,
that need to be overcome. We defer a detailed treatment of each of these areas to our forthcoming
paper [26].
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Information Pattern Reference
Centralized SF + OF [15]

Delay and/or Sparsity Constrained SF [18,21,22]
Delay and/or Sparsity Constrained OF [23–25]

Table 1: A selection of relevant results from distributed H2 optimal control that can be applied
to the disturbance rejection problem (DRP). This list is far from exhaustive and we recommend
the interested reader consult the references found within the cited papers. We note that some of
the results are presented for infinite horizon problems, but are easily modified to accommodate
finite horizon problems with zero mean initial conditions. Here SF and OF denote state and output
feedback, respectively.

5.1 Virtual Dynamics & Recursive Layered Architectures

The layered architecture presented in §3 is quite extreme, consisting of a static planning problem
and a dynamic tracking layer – in practice, it may be desirable for a cyber-physical system to have
more than two layers, with each layer operating on different simplified models of the underlying
system. The vertical layering approach that we describe in §3 can be modified to include virtual
(and possibly simpler) dynamics in the planning layer: in such a way the relaxation approach can
be applied recursively to yield a multi-layered system.

Before explaining how this can be done, consider a familiar “live demo” that illustrates the need
for the inclusion of several layers, with higher layers using simpler dynamic models. In particular,
consider the task of filling a glass of water and taking a drink. Any conscious planning and execution
is typically done with simple arm and glass positions and velocities. These positions and velocities
are then converted to the muscle torques and forces needed to move the glass and compensate for the
changing water weight. Similarly, these actions at the muscular level are effected by changes at the
cellular level, and in turn actions at the cellular level are effected by changes at the macromolecular
level. In this example the use of layering allows for functional tasks to be rapidly planned and
executed in a simple virtual space, without explicitly accounting for the bewildering complexity of
our underlying physiology and biochemistry.

To see how such a recursive layered architecture can be synthesized using our suggested relaxation
approach, consider the following modified planning problem obtained by adding virtual dynamics
(described by state matrices Mt and control matrices Nt) to (7):

minimize
r0:N

C
(
rstate
0:N

)
+ f track

ρ (r0:N )

s.t. rstate
0:N ∈ R
rstate
t+1 = Mtr

state
t +Ntr

input
t .

(14)

Here we have partitioned the reference rt into a virtual state component rstate
r and a virtual control

input component rinput
t , and assumed that C0:N · r0:N = rstate

0:N – this specific decomposition of the
reference state is not necessary, but makes the exposition clearer.

Notice that problem (14) is of a very similar form to that of the optimization problem (5) that
we originally considered, and we can apply a similar vertical decomposition to that used to obtain
(6). In particular, by introducing a redundant higher-level virtual quantity ht constrained to satisfy
ht = rstate

t and suitably relaxing this to a soft constraint in the objective, we obtain

minimize
h0:N

C (h0:N )

s.t. h0:N ∈ R
+

Intermediate Tracking Problem︷ ︸︸ ︷
minimize

r0:N
λ‖h0:N − rstate

0:N ‖+ f track
ρ (r0:N )

s.t. rstate
t+1 = Mtr

state
t +Ntr

input
t ,

(15)
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t = �i
t(Ii
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xt+1 = Atxt + Btut + Htwtwt

r0:N
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x
t �

r
t

Tracking

Planning
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input
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h0:N

minimize
h0:N

C (h0:N ) + ginterm
� (h0:N )

s.t. h0:N 2 R

Figure 2: Three-tiered layered architecture obtained by recursively applying our proposed relax-
ation based solution to optimization problem (5). The architecture has three layers: a low-level
tracking, or reflex, layer, an intermediate tracking layer acting on virtualized dynamics, and a
high-level static planning layer.

where λ > 0 denotes the “intermediate tracking problem” weight. As in §3, assume that an analytic
solution to the intermediate tracking problem is available such that its cost can be expressed via
a function ginterm

λ (v0:N ) convex in v0:N , and that this cost can be achieved using a feedback policy
rinput
t (h0:t) (this assumption holds if LQG like penalties are used throughout). Optimization problem
(15) then reduces to a planning optimization problem of exactly the same form as (7) save for the
use of ginterm

λ in lieu of f track
ρ . We illustrate the resulting three-tiered layered architecture in Fig. 2.

We end this section with a final observation and important direction for future work. We note
that the higher-level virtual state ht ≈ rstate

t is of a smaller dimension than that of the full reference
quantity rt. This suggests an approach to performing model reduction in the context of a layered
architecture of optimal controllers. In particular, the tracking penalty f track

ρ restricted to the range
of the virtual dynamics can be used to quantify the ability of the tracking-layer to emulate the simple
and possibly lower-order virtual dynamics used in the higher layers, thus providing a measure of
how well the desired virtualization can be implemented. Formalizing this intuition and exploring
its consequences is the subject of current research.

5.2 Real-Time Planning

As of yet, an implicit assumption has been that the planner is able to solve optimization problem
(7) before the system moves. In general, planning will have to occur in real time. A straightforward
way to incorporate real-time planning into our framework is to have the planning layer implement an
optimization algorithm, such as gradient descent, and to allow the planning layer to runK iterations
of this algorithm per time step t of the dynamics. The updates to the reference trajectory are simply
modeled as noise entering the reference trajectory state rt in the augmented state dynamics specified
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in (8). In particular, the error dynamics are now given by[
et+1

rt+1

]
= Ãt

[
et
rt

]
+ B̃tut + H̃twt +

[
0
I

]
∆rt, (16)

where ∆rt contains the reference trajectory update computed after K iterations of the optimization
algorithm, i.e., ∆rt = r

(tK)
t − r

((t−1)K)
t for r(k)t the kth iterate of the algorithm.

5.3 Alternative Tracking Metrics

Using a LQG like tracking metric allows us to decompose the tracking problem (8) into two inde-
pendent subproblems, each of which can be solved using existing techniques from the literature.
This separation principle is not likely to extend to induced norms such as the H∞ or L1 norms,
thus motivating the need to holistically consider the tracking problem. For instance, if both the
state information set It and reference information set Jt are centralized and the tracking metric
is taken to be a finite horizon H∞ cost function, then the methods from [27] can be used to solve
the resulting tracking problem. Interestingly, the tracking penalty f track

ρ is also a quadratic form,
just as the tracking penalty (12) of the LQG tracking problem, but is specified by the solution to a
modified Riccati recursion. As far as we are aware, no exact solutions exist to the finite horizon L1
optimal control problem with known initial conditions – recent work [28] indicates that such per-
formance metrics are particularly relevant to sensorimotor control, thus motivating further study of
such problems.

5.4 Distributed Reference Following

Although the centralized reference following and distributed disturbance rejection control architec-
ture studied in §4 has direct applications to several areas (e.g., sensorimotor control and datacenter
control), there is nonetheless an obvious motivation for distributing the reference following tasks in
large-scale systems (e.g., wide area networks and the power-grid). Unfortunately, under such infor-
mation sharing constraints, it is not clear if the arguments used to prove Theorem 1 can be modified
to show that linear control laws are optimal – in fact, it is not even clear if the optimal policy is
independent of the reference trajectory, or if it is a feedback policy. These questions arise because
of the lack of a so-called central coordinator that has access to the global plant model and noise
statistics – the existence of such a coordinator is either implicitly [12] or explicitly assumed [29] in
the distributed optimal control literature.

However, if we are satisfied with restricting ourselves to linear feedback policies, quadratic costs
and jointly Gaussian disturbances, then the decomposition described in the previous section still
holds (subject to suitable constraints on the reference sharing constraints κij). Unfortunately, as
far as we are aware, no results in the distributed optimal control literature are able to accommodate
known nonzero initial conditions – recall that in our framework, the initial conditions of the tracking
problem are specified by a known initial error e0 and a reference trajectory r0:N . In the case of
H2 distributed optimal control, statistical independence between subsets ei0 and ri0 of the initial
conditions and disturbances wit is the main tool used to solve the controller synthesis task (e.g., [18,
21]): however, known nonzero initial conditions breaks this statistical independence, thus preventing
us from applying these methods. We were able to circumvent this issue in §4 by assuming that the
deterministic nonzero initial conditions are globally known, but if we assume information sharing
constraints on the reference trajectory r0, then this approach no longer works.

A possible approach to overcoming this limitation in the theory is to further relax the tracking
problem by embedding the initial condition x0 and reference trajectory r0:N into the disturbance
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signal during the controller synthesis procedure. This allows for a much wider class of tracking
problems to be solved using existing methods from the literature: in addition to the methods
summarized in Table 1, methods for distributed H∞ optimal control [30–32] and L1 optimal control
[33] can be leveraged. If this approach is taken, then computing the resulting tracking penalty
f track
ρ is more involved – in particular, we must view this as a simulation of the closed loop response
of the system to a given x0 and r0:N . Thus the proposed relaxation can be viewed as one of
synthesizing the tracking layer controller for average-case (if an LQG like tracking metric is used) or
worst-case (if an induced norm tracking metric is used) reference trajectories and initial conditions.
However, the planning layer simulates, via the internal model of the tracking layer captured in
the tracking penalty f track

ρ , the response of the system to the specific reference trajectory being
considered when solving the planning problem (7). We defer a general statement and analysis of
this approach to [26], but informally consider an example here. In the case of LQG optimal control
we can exploit the independence of the noise terms to decompose the the closed loop cost into a
term measuring the effect of the disturbances wt and a term measuring the effect of the initial error
e0 and the reference trajectory r0. Letting Gr(e0, r0) denote the closed loop response of the system
to initial conditions specified by e0 and r0, the corresponding tracking penalty is then given by
f track
ρ (r0:N ) = ‖Gr(e0, r0)‖2H2

.

5.5 Distributed Planning (Horizontal Decompositions)

A strength of the LAO framework is that if the utility function C (·) and state constraints R are
suitably structured, then the resulting optimization problem can be horizontally decomposed and
solved in a distributed manner, allowing the approach to scale to very large systems. Although such
real-time distributed optimization schemes can easily be incorporated into the proposed framework
(as described in §5.2) other challenges must be overcome. In particular, assuming that the utility
function C (·) and state constraints R are suitably structured is not sufficient to ensure that the
planning problem (7) admits a similar horizontal decomposition. This is because, in general, the
closed loop response of a system will be dense, even if the dynamics and controller are distributed
– this results in a dense penalty f track

ρ .
This motivates the need for synthesizing distributed controllers that lead to (approximately)

sparse closed loop responses such that the resulting tracking penalty f track
ρ is also (approximately)

sparse, and hence amenable to horizontal decomposition. The recently developed localized optimal
control framework [10,11] yields such sparse closed loop responses – however, the localized optimal
control method is only applicable to problems for which the initial condition is embedded into the
disturbance signal, and thus the additional relaxation to the tracking problem described in §5.4 must
be applied. Alternatively, it has been observed that structured systems often have approximately
sparse optimal closed loop responses, e.g., [34, 35]. In the case of an LQG tracking metric, this
implies that the matrix P0 specifying the tracking penalty (12) is approximately sparse. Thus one
may find a structured matrix Q0 satisfying Q0 � P0, and use the corresponding quadratic form in
the tracking problem (8). This can be interpreted as a conservative localized approximation of the
closed loop response by the planning layer – if the closed loop response is already approximately
sparse, then this approximation introduces little to no conservatism into reference trajectory r0:N
generated by the planning layer.

13



6 Numerical Example

Consider linear time-invariant (LTI) dynamics (1) describing a discrete-time single integrator with
sampling time τ :

Adi =

[
1 τ
0 1

]
Bdi =

[
0
τ

]
, Hdi = .1τI2

and suppose that two such double integrators are dynamically coupled via randomly generated
matrices A12 and A21. The dynamics (1) of the coupled system are then specified by

A2di =

[
Adi A12

A21 Adi

]
, B2di =

[
Bdi

Bdi

]
, H2di =

[
Hdi

Hdi

]
In this example, we impose the following distributed constraints on the control laws

u1t = γt(x
1
0:t, x

2
0:t−1, x0, r0:t), u

2
t = γt(x

1
0:t−1, x

2
0:t, x0, r0:t),

i.e., each subsystem can communicate its state to its neighbor with a delay of one time-step, and
that the reference trajectory is globally available. We follow the approach described in §4 and use an
LQG-like tracking metric: the resulting tracking problem (8) satisfies the assumptions of Theorem 1
and Corollary 1. Thus we can decompose the tracking problem into a centralized reference following
program (RFP) and a distributed disturbance rejection problem (DRP), where this latter problem
can be solved via the methods of [21].

We take the control penalty Rt = .01I2, let vt = .1 sin(2π10 t) and define the cost function as
C (r0:N ) =

∑N
t=0 |r1t (1)− vt|+ |r2t (1)− vt|, where rit(1) denotes the reference position coordinate of

double-integrator i. We assume for now that there are no state-constraints R. Thus the planning
goal is to minimize the total variation between the position of each double integrator and a sinusoidal
reference trajectory. For our numerical examples, we set τ = .1 and x0 = [.2, 0,−.2, 0]>.

Shown in Fig. 3 are the state trajectories for varying levels of ρ – as the system is being driven
by noise, the reference is not tracked exactly, even as ρ grows. We also solve the problem with no
driving noise (i.e., Hdi = 0): the result is shown in the last subfigure of Fig. 3. In this case, we can
solve the original optimization problem (5), and numerically verify that the solution computed via
relaxation (6) is exact for sufficiently large ρ.

In the previous examples, we assumed that the planner was able to solve optimization problem
(7) before the system moved or the dynamics had any effect on the state, but as discussed in §5.2
this assumption can be relaxed. Illustrated in Figure 4 is the distributed control problem described
above with real-time planning, with ρ = 1000 and Hdi = 0 (we set the process noise wt to zero
so as to make clear the effect of real-time planning) and various values of optimization algorithm
iterations K per time step t of the dynamics. For this example, we incorporated a state constraint
that imposes that the position of both double integrators have magnitude no larger than .05, and
we used a projected subgradient descent method with fixed step-size to solve the problem. As can
be seen, the state tracks the current iterate of the optimal trajectory generated by the optimization
algorithm, and these iterates converge to the true optimal trajectory.
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Proof: [Proof of Theorem 1 (sketch)] The proposed information sharing pattern is easily seen
to be partially nested as J it is globally shared, and Iit is assumed to be partially nested. It
is shown in Theorems 1 & 2 of [12] that in this setting, it suffices to consider static team de-
cision problems, as any finite horizon LQG problem can be reduced to such a static problem.
Let ξ> = [e>0 , r

>
0 , w

>
0 , . . . , w

>
N−1]

> be the stacked vector of initial conditions and disturbances.
Whereas [12] considers vectors ξ distributed as zero mean Gaussian random variables, we must
consider nonzero mean Gaussian random variables because of the deterministic nonzero initial con-
ditions specified by e0 and r0. Under the information sharing pattern J it = {x0, r0:t} this nonzero
mean is globally known, allowing us to extend the argument surrounding equations (20)-(23) of [12].
The necessary modification occurs in equations (21) and (22) by replacing the expression for the
conditional expectation E

[
ξ|Iit ∪ J it

]
with a suitably modified version to account for the nonzero

mean. The resulting optimal policy is then a linear function of both the available information sets
Iit ∪ J it and the globally known nonzero mean.

Proof: [Proof of decomposition (10)] Our proof strategy is to show that there exists an invertible
linear map from the information set Iit∪J it to the deterministic information set Dt and the stochastic
information set Sit . That this map is invertible is key to ensure that the proposed decomposition
does not introduce conservatism into the solution to the tracking problem (8). We proceed by
induction. At time t = 0, we set Si0 = {0} and D0 = {d0} = {e0, r0} – clearly there exists an
invertible linear map from Ii0∪J i0 = {0}∪{x0, r0} to D0∪Si0. By linearity, we can then decompose
the control input at time zero as u0 = µ0(D0) + ν0, where here ν0 = 0. It follows that equation
(10c) holds for t = 0. Now assume that equation (10c) holds at time t, and that there exists an
invertible linear map from Iit ∪ J it to Dt ∪ Sit . It follows that[

et+1

rt+1

]
= Ãtdt + B̃tµt + Ãtst + B̃tνt + H̃twt = dt+1 + st+1,
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where dt+1 and st+1 are as defined in equations (10a) and (10b). The first equality follows from the
induction hypothesis and by exploiting the linearity of the optimal control law to write ut = µt+νt,
where µt is a linear function of Dt and νt satisfies νit = νit(Sit). It is clear that dt+1 can be computed
given the policy µt and dt, and thus sit+1 may be computed locally as sit+1 = zit+1−dit+1, where here
we write zt = [e>t , r

>
t ], thus defining a linear map from Iit+1 ∪J it+1 to Dt+1 ∪Sit+1. To see that this

map is invertible, it suffices to note that (i) {e0, r0} ⊂ Dt+1, and that (ii) zjt+1−τij can be computed
at node i given djt+1−τij ∈ Dt+1 and sjt+1−τij ∈ Sit+1. Finally, it is clear that dt is a deterministic
state component, and that st is a zero mean Gaussian random variable (by the linearity of νt), from
which we get E[dts

>
t ] = 0.
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