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Abstract— Inspired by potential applications to the smart
grid, we develop a heuristic for sub-optimal, but acceptable,
control of decentralized systems subject to non-quadratically
invariant (non-QI) delay patterns. We do so by exploiting a
recently developed solution to the decentralized H2 model
matching problem subject to delays, which decomposes the
controller into a centralized, but delayed, component and a
decentralized FIR component. In particular, we present an
iterative procedure that exploits this decomposition to design
a sub-optimal decentralized H2 controller for non-QI systems
that is guaranteed a priori to be stable, and to perform no
worse than a controller computed with respect to a QI subset
of the non-QI constraint set. We then apply this procedure to
a smart-grid frequency regulation problem.

I. INTRODUCTION

Decentralized control problems arise when several deci-
sion makers, or controllers, need to determine their actions,
or inputs, based only on a subset of the total information
available about the system. These types of problems arise
in areas as diverse as physiology, economics and the power
grid. A particular class of decentralized control problems that
has received a significant amount of attention over the past
few decades is that of optimal H2 (or LQG) control subject
to delay constraints. In this case, the information constraints
can be interpreted as arising from a communication graph, in
which edge weights between nodes correspond to the delay
required to transmit information between them.

For the special case of the one-step delay information
sharing pattern, the H2 problem was solved in the 1970s
using dynamic programming [1], [2], [3]. For more complex
delay patterns, the separation principle fails [4], [5], [6],
making extensions beyond the state feedback case [7], [8]
difficult, although recent work [9] provides two dynamic
programming decompositions for the general delayed sharing
model.

In [10] it was shown that quadratically invariant (QI)
constraint sets are necessary and sufficient for a decentral-
ized optimal control problem to be amenable to convex
optimization. In [11], these results were specialized to the
communication delay case, and it was shown that a sufficient
(and under mild assumptions, necessary) condition for a
constraint set to be QI is that the controllers are able
to exchange information at least as fast as the dynamics
propagate through the plant.

In cases where this condition is met, the output feedback
H2 problem with communication delays has been solved
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using vectorization [10] or linear matrix inequalities (LMI)
[12], [13] techniques, and most recently using an extension
of spectral factorization [14]. Additionally, methods and/or
solutions exist for special instances of this problem, such as
the two-player systems considered in [15], [16], and spatially
invariant systems [17], [18], [19].

In most mechanical systems, the QI condition is easily
met, so long as appropriately reliable communication net-
works can be established. In the case of the power-grid,
however, both the communication and physical systems are
driven by electromagnetic energy and could propagate on
similar time scales.

Furthermore, a key characteristic of next-generation power
distribution systems is the incorporation of distributed re-
newable energy sources (DRES), such as photovoltaics,
wind turbines and electric vehicles. DRESs differ from their
traditional counterparts in two significant ways: (i) they are
not frequency coupled to the grid and (ii) their generation
is intermittent and unreliable. With thousands, and even
millions, of these DRESs plugging in to and out of the grid,
the possibility of the entire system being destabilized is very
real. In other words, incorporating these generators into the
grid eliminates the system’s inherent stability. Therefore, in
the new smart grid, sophisticated low-level control will not
only be beneficial to performance, but necessary for safety
and stability[20].

Inspired by this potential application, we look to develop
a heuristic for sub-optimal, but acceptable, control of decen-
tralized systems subject to non-QI delay patterns. As far as
the authors are aware, no other works in this spirit exist in the
literature. In [14], the QI problem is solved by decomposing
the controller into a centralized, but delayed, component
and a decentralized FIR component. Our main contribution
is in developing an iterative procedure that exploits this
decomposition to design a sub-optimal decentralized H2

controller for non-QI systems that is guaranteed a priori
to be stable, and to perform no worse than a controller
computed with respect to a QI subset of the non-QI constraint
set. We then apply this procedure to a smart-grid frequency
regulation problem.

This paper is organized as follows: Section II presents
the general problem to be studied, and presents the solution
from [14] for the QI case. Section III presents our heuristic
for the non-QI case, and Section IV applies this heuristic
to a smart-grid frequency regulation problem that is subject
to non-QI communication constraints. Section V ends with
conclusions, and suggestions for future work.



II. PRELIMINARIES

1) H2 Preliminaries: Let D ={z ∈ C : |z| < 1}
be the unit disc of complex numbers. A function G :
(C
⋃{∞})\D→ Cp×q is in H2 if it can be expanded as

G(z) =

∞∑

i=0

1

zi
Gi

where Gi ∈ Cp×q and
∞∑

i=0

Tr(GiG
∗
i ) <∞. Define the

conjugate of G by

G(z)∼ =

∞∑

i=0

ziG∗i

H2 is a Hilbert space with inner product given by

< G,H > = 1
2π

∫ π
−π Tr(G(ejθ)H(ejθ)∼)dθ

=
∑∞
i=0 Tr(GiH

∗
i ),

where the last equality follows from Parseval’s identity.
Finally, if M is a subspace of H2, denote the orthogonal

projection onto M by PM.
2) Decentralized Model Matching: Quadratically Invari-

ant Case: Let P be a stable discrete-time plant given by

P =




A B1 B2

C1 0 D12

C2 D21 0


 =

[
P11 P12

P21 P22

]
(1)

with inputs of dimension p1, p2 and outputs of dimension
q1, q2. We restrict attention to stable plants for simplicity.
These methods could also be applied to an unstable plant if
a stable stabilizing nominal controller can be found, as in
[10]. We note that this task may be non-trivial, with strong
guarantees existing only in the sparsity constrained setting
[21].

To ensure the existence of stabilizing solutions to the
appropriate Riccati equations (note that stabilizability and
detectability of (A,B2, C2) is implied by the assumption of
a stable plant), we assume

• DT
12D12 > 0,

• D21D
T
21 >0,

• CT1 D12 = 0
• B1D

T
21 = 0

For N ≥ 1, define the space of strictly proper fi-
nite impulse response (FIR) transfer matrices by XN =
⊕Ni=1

1
ziC

p2×q2 . Note that in the following, we sometimes
suppress the subscript and write XN = X when N is
clear from context. We can therefore decompose 1

zH2 into
orthogonal subspaces as

1

z
H2 = XN ⊕

1

zN+1
H2,

In this paper, we are concerned with controller constraints
described by delay patterns that are imposed by strongly
connected communication graphs. As such, let Rp be the
space of proper real rational transfer matrices, and S ⊂ 1

zRp

Fig. 2. The graph depicts the the communication structure of the three-
player chain problem. Players 1 and 3 pass information to player 2 after
a single step delay, while player 2 passes information to players 1 and 3
after a single step of delay.

V. NUMERICAL EXAMPLES

The results in this paper demonstrate that decentralized
model matching with communication delays can be effi-
ciently solved by optimization. In particular, aside from cen-
tralized Riccati equations, the only numerical computation
required is a quadratic program specified by Equations (26)
and (27). This section demonstrates the method with a few
examples.

A. The Chain Problem

The three-player chain structure, [8], is a delayed informa-
tion sharing pattern specified by the graph in Figure 2. In the
frequency domain, the information structure is represented
by the constraint K ∈ SCh = YCh ⊕ 1

z3 Rp, where YCh is
given in Equation (4). Consider the plant specified by

A =




0.5 0.2 0
0.2 0.5 0.2
0 0.2 0.5


 ,

B =
�

I3×3 03×3 I3×3

�
,

C =




I3×3

03×3

I3×3


 ,

D =




03×3 03×3 03×3

03×3 03×3 I3×3

03×3 I3×3 03×3


 .

For comparison purposes, the optimal H2 norm was com-
puted using model matching from this paper, the LMI method
of [16], [17], and the vectorization method of [15]. In all
three cases the norm was found to be 2.1082. In contrast, the
centralized controller, Q0, gives a norm of 2.0853, while the
delayed controller, Q2, gives a norm of 2.1780. This is to be
expected, since the controller obeying the three-player chain
structure is more constrained than Q0, but less constrained
than Q2: 1

z3 H2 ⊂
�
SCh ∩ 1

z H2

�
⊂ 1

z H2.

B. Increasing Delays

Consider the plant with matrices given by

A =




1 0.2 0 0
−0.2 0.8 0 0.2

0 0 1 0.2
0 −0.2 −0.2 0.8


 ,

B =




0 0 0 0 0 0
0.2 −0.2 0 0 0.2 0
0 0 0 0 0 0

0.2 0.2 0 0 0 0.2


 ,
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Fig. 3. This plot shows the closed-loop norm for QN
Tri, QN

Di, QN
Low, and

QN (the pure delay case). For a given N , the controllers with fewer sparsity
constraints give rise to lower norms. As N increases, all of the norms
increase monotonically since the controllers have access to less information.
The dotted lines correspond to the optimal norms for sparsity structures
given in Equation (28). For pure delay, QN → 0 as N → ∞, and thus the
norm approaches the open-loop value.

C =




10 0 −10 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




,

D =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0




.

For N ≥ 1, let QN
Tri, QN

Di, and QN
Low solve the decentral-

ized model matching problem, Equation (3), with the form

QN
Tri = UN

Tri + V N
Tri,

QN
Di = UN

Di + V N
Di ,

QN
Low = UN

Low + V N
Low.

Here UN
Tri, UN

Di, UN
Low ∈ 1

zN+1 H2 and V N
Tri, V N

Di , V N
Low are

FIR transfer matrices with sparsity structure given by

V N
Tri =

N�

i=1

1

zi

�
∗ 0
∗ ∗

�
,

V N
Di =

N�

i=1

1

zi

�
∗ 0
0 ∗

�
,

V N
Low =

N�

i=1

1

zi

�
0 0
0 ∗

�
.

The resulting norms are plotted in Figure (3).
As N → ∞, the resulting controllers appear to approach

Fig. 1: The graph depicts the communication structure of the three-player
chain problem. Edge weights (not shown) indicate the delay required to
transmit information between nodes.

be a subspace of the form

S = Y ⊕ 1

zN+1
Rp (2)

where Y = ⊕Ni=1
1
ziYi ⊂ ⊕Ni=1

1
ziR

p2×q2 ⊂ XN . Specifically,
this implies that every decision-making agent has access to
all measurements that are at least N + 1 time-steps old.

We can therefore partition the measured outputs y and
control inputs u according to the dimension of the subsys-
tems:

y = [ yT1 · · · yTm]T u = [ uT1 · · · uTn ]T

and then further partition each constraint set Yi as

Yi =



Y11
i · · · Y1m

i
...

. . .
...

Yn1
i · · · Ynmi


 , (3)

where

Yjki =

{
Rp

j
2×qk2 if uj has access to yk at time i

0 otherwise
(4)

and
∑n
j=1 p

j
2 = p2,

∑m
k=1 q

k
2 = m.

Example 1: Consider the three player chain problem as
illustrated in Figure 1, with communication delay τc between
nodes. Then

S =




1
zRp 1

z1+τcRp 1
z1+2τcRp

1
z1+τcRp 1

zRp 1
z1+τcRp

1
z1+2τcRp 1

z1+τcRp 1
zRp




= ⊕2τc
i=1

1
ziYi ⊕ 1

z2τc+1Rp

(5)

with

Yi =







∗ 0 0

0 ∗ 0

0 0 ∗


 for i ≤ τc



∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


 for τc < i ≤ 2τc

,

where, for compactness, * is used to denote a space of ap-
propriately sized real matrices. In this setting, every decision
maker then has access to all measurements that are at least
2τc + 1 time-steps old.

The decentralized control problem of interest is to design
a controller K ∈ S so as to minimize the closed loop H2

norm of the system:

minimize
K

||P11 + P12K(I − P22K)−1P21||H2

s.t.K ∈ S
(6)

In [10], it was shown that a necessary and sufficient
condition to be able to pass to the Youla parameter Q =



K(I −P22K)−1 in (6) is that the constraint set be quadrat-
ically invariant.

Definition 1: A set S is quadratically invariant under P22

if
KP22K ∈ S for all K ∈ S

Under this assumption on S and P22, we can pass without
loss to the Youla domain. Since K is strictly proper and
stabilizing, Q must be strictly proper and stable; thus (6)
can be reduced to the following model matching problem:

minimizeQ ||P11 + P12QP21||H2

s.t. Q ∈ S ⋂ 1
zH2

(7)

For technical simplicity, all controllers in this paper are
assumed to be strictly proper – the results extend to non-
strictly proper controllers, but the resulting formulas are more
complicated. Although this problem admits several solutions
[9], [10], [12], [13], we follow the one presented in [14].

Let X , Y be the stabilizing solutions to the following
Riccati Equations

X = CT1 C1 +ATXA− (ATXB2 + CT1 D12)×
Ω−1(ATXB2 + CT1 D12)T

Y = BT1 B1 +AY AT − (AY CT2 +B1D
T
21)×

Ψ−1(AY CT2 +B1D
T
21)T

where Ω := DT
12D12 + BT2 XB2, and Ψ := D21D

T
21 +

C2Y C
T
2 . Define the regulator and filter gains, respectively,

as

K = −Ω−1(BT2 XA+DT
12C1)

L = −(AY CT2 +B1D
T
21)Ψ−1

and the auxiliary matrix T by

T = Ω1/2

[
A L
K 0

]
Ψ1/2. (8)

Finally, let WL and WR be left and right spectral factors for
P∼12P12 and P21P

∼
21 such that

P∼12P12 = W−∼L W−1
L , P21P

∼
21 = W−1

R W−∼R

We first present the classical solution to the delayed model
matching problem, from which the decentralized solution is
then constructed.

Theorem 1: The optimal solution to the delayed model
matching problem

minimizeQ ||P11 + P12QP21||H2

s.t. Q ∈ 1
zN+1H2

(9)

is given by

QN = −WLP 1

zN+1H2
(T )WR

Theorem 2: (From [14]) The optimal solution to (7) is
given by

Q∗ = U∗ + V ∗

where V ∗ ∈ Y is the unique minimizer of

||G(V )||2H2
+ 2 < G(V ), T > (10)

with G(V ) = PX (W−1
L VW−1

R ), and

U∗ = QN −WLP 1

zN+1H2
(W−1

L V ∗W−1
R )WR ∈

1

zN+1
H2.

(11)
The optimal cost is then given by

J(Q∗, P ) = ||P11 + P12QNP21||2H2

+||G(V ∗)||2H2
+ 2 < G(V ∗), T >

(12)

The assumption of a strongly connected graph is key in
the above, as it allows for the optimal controller Q∗ to be
decomposed as the direct sum of a FIR filter V ∗, and a
delayed, but centralized, component U∗ that depends only
on globally available information.

The FIR component V ∗ of the optimal decentralized
controller can be computed by solving a quadratic program.
For ease of notation, let Gi(V ) = Gi, and H = W−1

L ,
J = W−1

R . Note that H and J can be expanded as H =∑∞
i=0

1
ziHi and J =

∑∞
i=0

1
zi Ji. Similarly, T and V admit

the expansions T =
∑∞
i=1

1
ziTi, and V =

∑N
i=1

1
ziVi ∈ Y ,

with each Vi ∈ Yi.1
Lemma 1: The FIR transfer matrix G(V ) can be written

G(V ) =

N∑

i=1

1

zi
Gi, with Gi =

∑

j,l≥0,k≥1
j+k+l=i

HjVkJl

and, applying Parseval’s identity to (10), we can formulate
the optimization problem as

minimizeV

∑N
i=1 TrGiG

∗
i +2

∑N
i=1 TrGiT

∗
i

s.t. Vi ∈ Yi
(13)

Remark 1: It was shown in [14] that (13) is a convex
quadratic program with a unique solution.

III. DECENTRALIZED MODEL MATCHING:
NON-QUADRATICALLY-INVARIANT CASE

In cases where the constraint set is not QI, the optimiza-
tion problem (6) becomes much more difficult as we cannot
directly pass to the Youla domain. In fact, in this case, it is
not guaranteed that the optimal control law is even linear.

In this section, we present a heuristic for decentralized
sub-optimal control that appears to work well in practice.
We begin by introducing the notion of a QI cover for a non-
QI constraint set:

Definition 2: A QI cover S̄QI of a non-QI constraint set
S is a set of subsets {Si} ⊂ S such that

1) Si is QI under P22

2)
⋃
Si∈S̄QI Si = S

Furthermore, for the types of constraint sets S that we
consider in this paper (induced by strongly connected com-
munication graphs), a QI cover always exists:

Proposition 1: Let S be a constraint set of the form (2).
Then there exists a QI cover S̄QI for S.
Proof: If S is QI under P22, simply set S̄QI = S. Otherwise,
let Ei = [0, ..., I, ..., 0]T , where the identity matrix is in the

1The component matrices Hi, Ji and Ti can be easily computed via state
space methods, c.f. [14]



ith position, and taken to be of appropriate dimension based
on context. Recall that S can be expanded as

S = ⊕Ni=1

1

zi
Yi ⊕

1

zN+1
Rp (14)

where each Yi ⊂ Rp2×q2 is partitioned as in (3). Let iab :=
min{i ∈ {1, ..., N + 1} | Yabi 6= 0}. Let

Sab := ⊕Ni=iab
1

zi
EaYabi ETb ⊕

1

zN+1
Rp,

and
S̄QI := {Sab | iab ≤ N}.

The claim is that S̄QI is a QI-cover of S. Clearly∑
Si∈S̄QI Sab = S, and so it suffices to show that each Sab

is QI under P22, or equivalently that KP22K ∈ Sab for all
K ∈ Sab. For ease of notation, we will write P22 = G. Let
K ∈ Sab be arbitrary. Since both G, K ∈ 1

zH2 they admit
the expansions

G =

∞∑

i=1

1

zi
Gi, K =

∞∑

i=1

1

zi
Ki

for appropriately chosen matrices Gi, Ki. Similary, we can
expand KGK as

KGK =

∞∑

i=1

1

zi
(KGK)i

where
(KGK)i =

∑

j,k,l≥1
j+k+l=i

KjGkKl.

In order to show KGK ∈ Sab, it suffices to show that
(KGK)i ∈ EaYabi ETb for i = 1, ..., N . Given that K ∈ Sab,
for i = 1, ..., N we can write

Ki =

{
EaK̃iE

T
b if i ≥ iab

0 otherwise
,

for appropriately chosen K̃i ∈ Yabi . Therefore for j, k, l ≥ 1,
j + k + l = i, i = 1, ..., N we have

KjGkKl = EaK̃jE
T
b GkEaK̃lE

T
b

= Ea K̃jG
ba
k K̃l︸ ︷︷ ︸

∈Yabi

ETb ∈ EaYabi ETb .

As each term in the expansion of (KGK)i is in EaYabi ETb ,
it follows that (KGK)i ∈ EaYabi ETb , proving the claim.

Remark 2: An intuitive interpretation of QI in the delay
constrained case is that the delay pattern between controllers
needs to be such that it removes any incentive to signal
through the plant. With this in mind, we can easily under-
stand why Sab ∈ S̄QI in the proof above is QI: during the
initial FIR window (i.e. for i = 1, ..., N ) only one controller
is active, and thus has no need to communicate (be it through
the plant or otherwise) with the other controllers.

Remark 3: This construction is by no means unique, and
“better” (for our heuristic) constructions will usually exist.
This point will be illustrated in the examples, and algorithms

for constructing better QI covers (possibly exploiting the
methods developed in [22]) are the subject of future work.

Example 2: Consider the previously described three
player chain problem with S as in (5) , with τc = 3, and let

P22 ∈




1
zRp 1

z2Rp 1
z3Rp

1
z2Rp 1

zRp 1
z2Rp

1
z3Rp 1

z2Rp 1
zRp


 .

It is easily verified that S is not QI under P22. A QI cover for
S can be constructed as described in the proof of the previous
lemma, with cardinality 7. However, another QI cover of
smaller cardinality, and with less restrictive subsets Si, is
given by

S̄QI =








1
z3Rp 1

z4Rp 1
z7Rp

1
z4Rp 1

zRp 1
z4Rp

1
z7Rp 1

z4Rp 1
zRp


 ,




1
zRp 1

z4Rp 1
z7Rp

1
z4Rp 1

zRp 1
z4Rp

1
z7Rp 1

z5Rp 1
z3Rp







We are now in a position to present our algorithm for
sub-optimal control subject to non QI constraints:

Algorithm 1: Consider a plant P as in (1) and a non-QI
constraint set S of the form (2). Then the algorithm proceeds
as follows:

1) Given a non-QI constraint set S and plant P , compute
a QI cover S̄QI .

2) For each Si ∈ S̄QI , compute Qi according to Theorem
2 and Lemma 1 to obtain costs J(Qi, P ).

3) Select i∗ = arg mini J(Qi, P ) and set K = Qi∗(I +
P22Qi∗)−1. Apply controller K to plant P to obtain the
closed loop plant P̄ .

4) Set P = P̄ and S̄QI = S̄QI\Si∗ . If S̄QI 6= ∅, return to
2.

Remark 4: Since this method is a greedy algorithm, it is
guaranteed to perform at least as well as optimizing with
respect to the best QI subset S∗i ∈ S̄QI . After the first
iteration, the closed loop norm of the system is precisely
that obtained when optimizing with respect to S∗i – at each
subsequent iteration, Qi = 0 is always a feasible controller,
and hence the sequence of costs J(Qi∗,P ) is non-increasing.

To explain the intuition behind this heuristic, assume that
S̄QI is generated as in the proof of Proposition 1. At each
step, the algorithm introduces artificial inter-controller delay
by optimizing with respect to a QI constraint set Si ∈ S̄QI :
this allows for easy computation of a decentralized controller
(that is optimal within Si) at the expense of a higher
cost. Then, as the algorithm iterates, each such optimization
computes the optimal FIR component of a local controller
assuming all other controllers are inactive during this initial
timeframe, and adjusts the rest of the controller according to
(11).

In practice, we observe that this heuristic works extremely
well when the dynamic coupling between the plants is weak
during the FIR window i = 1, ..., N , but does not perform as
well otherwise. We illustrate these ideas with the following
toy example



Example 3: Let

P 1 =




.1 .8
−.8 .1

I2×2
1 −1
−1 1

1 −1
−1 1

02×2 I2×2

I2×2 I2×2 02×2




=⇒ P 1
22 ∈

[
1
zRp 1

zRp
1
zRp 1

zRp

]
,

P 2 =




.9 0
0 .9

I2×2 10I2×2

1 −1
−1 1

02×2 I2×2

I2×2 I2×2 02×2



,

=⇒ P 2
22 ∈

[
1
zRp 1

z2Rp
1
z2Rp 1

zRp

]
,

and
S =

[
1
zRp 1

z5Rp
1
z5Rp 1

zRp

]
.

Then S is not QI under either P i22. QI covers under P 1
22 and

P 2
22 are given by, respectively,

S̄1 =

{[
1
z3Rp 1

z5Rp
1
z5Rp 1

zRp

]
,

[
1
zRp 1

z5Rp
1
z5Rp 1

z3Rp

]}

S̄2 =

{[
1
z2Rp 1

z5Rp
1
z5Rp 1

zRp

]
,

[
1
zRp 1

z5Rp
1
z5Rp 1

z2Rp

]}
.

Note that although in this example, the matrices B1, D21, C1

and D12 do not satisfy our assumptions from Section II.2,
stabilizing equations to the necessary Riccati equations do
exist, and thus our methods are still applicable.

Applying our heuristic to P 2
22 with S̄2, we obtain a cost of

2.791, which is the same cost that is achieved if we optimize
with respect to the non QI constraint set S (i.e. by applying
Theorem 2 and Lemma 1 with Q ∈ S). In this case we note
that there is no coupling between the two plants during the
first time step, which is precisely the component of the FIR
filter that we are iterating over.

Conversely, if we apply our heuristic to P 1
22 with S̄1, we

obtain a cost of 23.668, which is higher than 23.211, the
cost achieved when optimizing with respect to the non QI
constraint set S. In this case, we see that there is coupling
between the two plants from the first time step on, and we
are iterating over the first two components of the FIR filter:
this leads to a loss in performance when optimizing the local
FIR components individually.

Remark 5: A glaring issue with this heuristic is that of
scalability. If |S̄| � 1 then a large number of loops need to
be closed, resulting in an extremely high order controller –
this issue will be the subject of future work.

IV. SMART-GRID APPLICATION

It was shown in [11] that a sufficient condition for a
constraint set induced by delay patterns to be QI is that
the propagation delay between plants be at least as long

!1 ! 2

u1 u2

P1
m P1

r P2
m P2

r

P12

P21

!"#$%

&'#$%

&'#$%

Fig. 2: The smart-grid frequency regulation problem considered in Section
IV: the goal is to regulate frequency deviations ωi, despite both mechanical
(Pm

i ) and renewables (P r
i ) based disturbances, using a decentralized

controller u = [u1, u2]T subject to non-QI communication constraints.

as the communication delay between controllers. In many
physical systems, this requirement can easily be achieved
– one system where it is not obvious if this will hold true
is the power grid. As was explained in the introduction, if
renewables are to be safely incorporated into the new smart-
grid, low-level decentralized control will be necessary, even
if the system is not QI.

As far as the authors are aware, the relevant time-scales
have not been identified yet in the power-systems literature,
and so we use educated guesses for the value of the delays.
We consider a two bus power network model (see Figure
2), modified from [23], where the goal is to suppress the
frequency deviations ωi, despite mechanical and renewables
based disturbances, by varying the response of frequency-
insensitive but controllable loads (with control input ui).

First, we introduce some notation and parameter values:
(i) ∆t=.005s: sampling period, (ii) M1 = 8.1564s, M2 =
6.000s: generator inertia constant (s), (iii) D1 = 4.0782pu,
D2 = 3.000pu: frequency sensitive load damping constant,
(iv) ω0 = 120π rad−1: common nominal frequency, (v)
B12 = B21=16.850pu: branch flow constant, (vi) P ri (W)
renewable power disturbances, (vii) γri = Mi

∆t : renewable
power disturbance scaling constant, (viii) Pmi (W) mechan-
ical power disturbances, (ix) γmi = 2Mi

∆t : mechanical power
disturbance scaling constant, (x) νi (rad−1): sensor noise,
and finally (xi) ε= .05

∆t (pu/s): transmission line dissipation
constant.

The dynamics of the system are then given by (15), where
the state vector x, disturbance vector ν, and control vector
u are given by

x = [ ω1 ω2 P12 P21 ]T

ν = [ Pm1 P r1 Pm2 P r2 ν1 ν2 ]T

u = [ u1 u2]T .

In this setup, we have

P22 ∈
[

1
zRp 1

z3Rp
1
z3Rp 1

zRp

]
,

which corresponds to a 15ms propagation delay of dynamics
between nodes. We assume that the communication delay
between controllers is 40ms, and thus we require

K ∈
[

1
zRp 1

z9Rp
1
z9Rp 1

zRp

]
=: S.



P =




1− ∆t
M1
D1 0 − ∆t

M1
0

0 1− ∆t
M2
D2 0 − ∆t

M2

∆tB12ω
0 −∆tB12ω

0 1− ε∆t 0
−∆tB21ω

0 ∆tB21ω
0 0 1− ε∆t

∆t
M1
γm1

∆t
M1
γr1 0 0 0 0

0 0 ∆t
M2
γm2

∆t
M2
γm2 0 0

0 0 0 0 0 0
0 0 0 0 0 0

− ∆t
M1

0

0 − ∆t
M2

0 0
0 0

1000I2×2 02×2

02×4
04×6

02×2

500I2×2

I2×2 02×2 02×4 I2×2 02×2




(15)

It is trivially verified that S is not QI under P22. However,

S̄QI =

{
S1 :=

[
1
z5Rp 1

z9Rp
1
z9Rp 1

zRp

]
, S2 :=

[
1
zRp 1

z9Rp
1
z9Rp 1

z5Rp

]}

forms a QI cover of S. The cost obtained when computing
the controller with respect to either S̄QI , or S, was 3733.
Thus, our heuristic matches the optimal cost obtained when
optimizing with respect to the non QI constraint set S.
Unfortunately, this comes at a (significant) cost in terms of
the controller order: 551 for S̄QI versus 99 for the non-
implementable controller computed with respect to S. We
do however believe that it will be possible to achieve similar
results without such an explosion in controller order, and this
will also be the subject of future work.

V. CONCLUSION AND FUTURE WORK

Inspired by this smart-grid applications in which delay pat-
terns may not be QI, we developed an iterative procedure that
designs stabilizing sub-optimal controllers for decentralized
systems subject to non-QI delay patterns. We then applied
this procedure to a smart-grid frequency regulation problem,
and in this case, observed that our heuristic matched the
performance achieved when optimizing with respect to the
non-QI constraint set imposed by the communication patterns
of the problem.

There are two main avenues for future work. The first is
to formalize what a “good” QI cover is for our heuristic,
and then to develop an algorithmic procedure for generating
one, perhaps exploiting results in [22]. The second is to
address scalability issues so as to extend the practicality of
this heuristic to large interconnected systems, such as the
smart-grid.
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