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Abstract— It has been shown that the decentralized H2

model matching problem subject to delay can be solved by
decomposing the controller into a centralized, but delayed,
component and a decentralized FIR component, the latter of
which can be solved for via a linearly constrained quadratic
program. In this paper, we derive the dual to this optimization
problem, show that strong duality holds, and exploit this to
further analyze properties of the control problem. Namely, we
determine a priori upper and lower bounds on the optimal
H2 cost, and obtain further insight into the structure of
the optimal FIR component. Furthermore, we show how the
optimal dual variables can be used to inform communication
graph augmentation, and illustrate this idea with a routing
problem.

I. INTRODUCTION

Decentralized control problems arise when several deci-
sion makers, or controllers, need to determine their actions,
or inputs, based only on a subset of the total information
available about the system. These types of problems arise
in areas as diverse as physiology, economics and the power
grid. A particular class of decentralized control problems that
has received a significant amount of attention over the past
few decades is that of optimal H2 (or LQG) control subject
to delay constraints. In this case, the information constraints
can be interpreted as arising from a communication graph, in
which edge weights between nodes correspond to the delay
required to transmit information between them.

For the special case of the one-step delay information
sharing pattern, the H2 problem was solved in the 1970s
using dynamic programming [1], [2], [3]. For more complex
delay patterns, the separation principle fails [4], [5], [6],
making extensions beyond the state feedback case [7], [8]
difficult, although recent work [9] provides two dynamic
programming decompositions for the general delayed sharing
model.

This paper focusses on the output feedback H2 prob-
lem with quadratically invariant [15] communication delays,
which has been previously solved using vectorization [15] or
linear matrix inequalities (LMI) [16], [17] , and most recently
using an extension of spectral factorization [18]. Addition-
ally, methods and/or solutions exist for special instances of
this problem, such as the two-player systems considered in
[10], [11], and spatially invariant systems [12], [13], [14].

In [18], the problem is solved by decomposing the con-
troller into a centralized, but delayed, component and a
decentralized FIR component. It is shown that the optimal
FIR component can be solved for via a linearly constrained
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quadratic program. In this paper, we show how this problem
can be converted to a semi-definite program (SDP) for
which strong duality holds. Then, much in the spirit of [19],
we exploit strong duality to further analyze the problem.
Namely, we determine a priori upper and lower bounds
on the optimal H2 cost, and obtain further insight into the
structure of the optimal FIR component. Furthermore, most
interestingly, and perhaps most practical, we show how the
optimal dual variables can be used to inform communication
graph augmentation, and illustrate this idea with a routing
problem.

This paper is structured as follows. Section II introduces
the general problem studied in this paper, and presents the
primal SDP. In Section III, we derive the dual problem, show
that strong duality holds, which we then exploit to further
analyze the optimal control problem. Section IV presents a
special type of routing problem for which we can determine
the best action for the router to take based on the optimal
dual variables, and Section V ends with conclusions and
suggestions for future work.

II. PRELIMINARIES AND PRIMAL PROBLEM
FORMULATION

1) H2 Preliminaries: Let D ={z ∈ C : |z| < 1}
be the unit disc of complex numbers. A function G :
(C
⋃{∞})\D→ Cp×q is in H2 if it can be expanded as

G(z) =

∞∑

i=0

1

zi
Gi

where Gi ∈ Cp×q and
∑∞
i=0 Tr(GiG

∗
i ) <∞. Define the

conjugate of G by

G(z)∼ =

∞∑

i=0

ziG∗i

H2 is a Hilbert space with inner product given by

< G,H > =
1

2π

∫ π

−π
Tr(G(ejθ)H(ejθ)∼)dθ

=

∞∑

i=0

Tr(GiH
∗
i ),

where the last equality follows from Parseval’s identity.

Finally, if M is a subspace of H2, denote the orthogonal
projection onto M by PM.



2) Problem Formulation: Let P be a stable discrete-time
plant given by

P =




A B1 B2

C1 0 D12

C2 D21 0


 =

[
P11 P12

P21 P22

]

with inputs of dimension p1, p2 and outputs of dimension
q1, q2. We restrict attention to stable plants for simplicity.
These methods could also be applied to an unstable plant if
a stable stabilizing nominal controller can be found, as in
[15]. We note that this task may be non-trivial, with strong
guarantees existing only in the sparsity constrained setting
[20].

To ensure the existence of stabilizing solutions to the
appropriate Riccati equations (note that stabilizability and
detectability of (A,B2, C2) is implied by the assumption of
a stable plant), we assume

• DT
12D12 > 0,

• D21D
T
21 >0,

• CT1 D12 = 0
• B1D

T
21 = 0

For N ≥ 1, define the space of strictly proper fi-
nite impulse response (FIR) transfer matrices by XN =
⊕Ni=1

1
ziC

p2×q2 . Note that in the following, we sometimes
suppress the subscript and write XN = X when N is
clear from context. We can therefore decompose 1

zH2 into
orthogonal subspaces as

1

z
H2 = XN ⊕

1

zN+1
H2,

In this paper, we are concerned with controller constraints
described by delay patterns that are imposed by strongly
connected communication graphs. As such, let Rp be the
space of proper real rational transfer matrices, and S ⊂ 1

zRp
be a subspace of the form

S = Y ⊕ 1

zN+1
Rp (1)

where Y = ⊕Ni=1
1
ziYi ⊂ ⊕Ni=1

1
ziR

p2×q2 ⊂ XN . Specifically,
this implies that every decision-making agent has access to
all measurements that are at least N + 1 time-steps old.

We can therefore partition the measured outputs y and
control inputs u according to the dimension of the subsys-
tems:

y = [ yT1 · · · yTm]T u = [ uT1 · · · uTn ]T

and then further partition each constraint set Yi as

Yi =



Y11
i · · · Y1m

i
...

. . .
...

Yn1
i · · · Ynmi


 , (2)

where

Yjki =

{
Rp

j
2×qk2 if uj has access to yk at time i

0 otherwise
(3)

and
∑n
j=1 p

j
2 = p2,

∑m
k=1 q

k
2 = m.

Fig. 2. The graph depicts the the communication structure of the three-
player chain problem. Players 1 and 3 pass information to player 2 after
a single step delay, while player 2 passes information to players 1 and 3
after a single step of delay.

V. NUMERICAL EXAMPLES

The results in this paper demonstrate that decentralized
model matching with communication delays can be effi-
ciently solved by optimization. In particular, aside from cen-
tralized Riccati equations, the only numerical computation
required is a quadratic program specified by Equations (26)
and (27). This section demonstrates the method with a few
examples.

A. The Chain Problem

The three-player chain structure, [8], is a delayed informa-
tion sharing pattern specified by the graph in Figure 2. In the
frequency domain, the information structure is represented
by the constraint K ∈ SCh = YCh ⊕ 1

z3 Rp, where YCh is
given in Equation (4). Consider the plant specified by

A =




0.5 0.2 0
0.2 0.5 0.2
0 0.2 0.5


 ,

B =
�

I3×3 03×3 I3×3

�
,

C =




I3×3

03×3

I3×3


 ,

D =




03×3 03×3 03×3

03×3 03×3 I3×3

03×3 I3×3 03×3


 .

For comparison purposes, the optimal H2 norm was com-
puted using model matching from this paper, the LMI method
of [16], [17], and the vectorization method of [15]. In all
three cases the norm was found to be 2.1082. In contrast, the
centralized controller, Q0, gives a norm of 2.0853, while the
delayed controller, Q2, gives a norm of 2.1780. This is to be
expected, since the controller obeying the three-player chain
structure is more constrained than Q0, but less constrained
than Q2: 1

z3 H2 ⊂
�
SCh ∩ 1

z H2

�
⊂ 1

z H2.

B. Increasing Delays

Consider the plant with matrices given by

A =




1 0.2 0 0
−0.2 0.8 0 0.2

0 0 1 0.2
0 −0.2 −0.2 0.8


 ,

B =




0 0 0 0 0 0
0.2 −0.2 0 0 0.2 0
0 0 0 0 0 0

0.2 0.2 0 0 0 0.2


 ,
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Fig. 3. This plot shows the closed-loop norm for QN
Tri, QN

Di, QN
Low, and

QN (the pure delay case). For a given N , the controllers with fewer sparsity
constraints give rise to lower norms. As N increases, all of the norms
increase monotonically since the controllers have access to less information.
The dotted lines correspond to the optimal norms for sparsity structures
given in Equation (28). For pure delay, QN → 0 as N → ∞, and thus the
norm approaches the open-loop value.

C =




10 0 −10 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




,

D =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0




.

For N ≥ 1, let QN
Tri, QN

Di, and QN
Low solve the decentral-

ized model matching problem, Equation (3), with the form

QN
Tri = UN

Tri + V N
Tri,

QN
Di = UN

Di + V N
Di ,

QN
Low = UN

Low + V N
Low.

Here UN
Tri, UN

Di, UN
Low ∈ 1

zN+1 H2 and V N
Tri, V N

Di , V N
Low are

FIR transfer matrices with sparsity structure given by

V N
Tri =

N�

i=1

1

zi

�
∗ 0
∗ ∗

�
,

V N
Di =

N�

i=1

1

zi

�
∗ 0
0 ∗

�
,

V N
Low =

N�

i=1

1

zi

�
0 0
0 ∗

�
.

The resulting norms are plotted in Figure (3).
As N → ∞, the resulting controllers appear to approach

Fig. 1: The graph depicts the communication structure of the three-player
chain problem. Edge weights (not shown) indicate the delay required to
transmit information between nodes.

Example 1: Consider the three player chain problem as
illustrated in Figure 1, with communication delay τc between
nodes. Then

S =




1
zRp 1

z1+τcRp 1
z1+2τcRp

1
z1+τcRp 1

zRp 1
z1+τcRp

1
z1+2τcRp 1

z1+τcRp 1
zRp




= ⊕2τc
i=1

1
ziYi ⊕ 1

z2τc+1Rp
with

Yi =







∗ 0 0

0 ∗ 0

0 0 ∗


 for i ≤ τc



∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


 for τc < i ≤ 2τc

,

where, for compactness, * is used to denote a space of ap-
propriately sized real matrices. In this setting, every decision
maker then has access to all measurements that are at least
2τc + 1 time-steps old.

The decentralized control problem of interest is to design
a controller K ∈ S so as to minimize the closed loop H2

norm of the system:

minimize
K

||P11 + P12K(I − P22K)−1P21||H2

s.t.K ∈ S
(4)

In [15], it was shown that a necessary and sufficient
condition to be able to pass to the Youla parameter Q =
K(I −P22K)−1 in (4) is that the constraint set be quadrat-
ically invariant.

Definition 1: A set S is quadratically invariant under P22

if
KP22K ∈ S for all K ∈ S

Under this assumption on S and P22, we can pass without
loss to the Youla domain. Since K is strictly proper and
stabilizing, Q must be strictly proper and stable; thus (4)
can be reduced to the following model matching problem:

minimize
Q

||P11 + P12QP21||H2

s.t. Q ∈ S ⋂ 1
zH2

(5)

For technical simplicity, all controllers in this paper are
assumed to be strictly proper – the results extend to non-
strictly proper controllers, but the resulting formulas are more
complicated. Although this problem admits several solutions
[9], [15], [16], [17], we follow the one presented in [18], as
it has structure that we exploit in the sequel.



3) Reduction to a Quadratic Program: Let X , Y be the
stabilizing solutions to the following Riccati Equations

X = CT1 C1 +ATXA− (ATXB2 + CT1 D12)×
Ω−1(ATXB2 + CT1 D12)T

Y = BT1 B1 +AY AT − (AY CT2 +B1D
T
21)×

Ψ−1(AY CT2 +B1D
T
21)T

where Ω := DT
12D12 + BT2 XB2, and Ψ := D21D

T
21 +

C2Y C
T
2 . Define the regulator and filter gains, respectively,

as

K = −Ω−1(BT2 XA+DT
12C1)

L = −(AY CT2 +B1D
T
21)Ψ−1

and the auxiliary matrix T by

T = Ω1/2

[
A L
K 0

]
Ψ1/2. (6)

Finally, let WL and WR be left and right spectral factors for
P∼12P12 and P21P

∼
21 such that

P∼12P12 = W−∼L W−1
L

P21P
∼
21 = W−1

R W−∼R .

We first present the classical solution to the delayed model
matching problem, from which the decentralized solution is
then constructed.

Theorem 1: The optimal solution to the delayed model
matching problem

minimizeQ ||P11 + P12QP21||H2

s.t. Q ∈ 1
zN+1H2

is given by QN = −WLP 1

zN+1H2
(T )WR.

Theorem 2: (From [18]) The optimal solution to (5) is
given by

Q∗ = U∗ + V ∗

where V ∗ ∈ Y is the unique minimizer of

||G(V )||2H2
+ 2 < G(V ), T > (7)

with G(V ) = PX (W−1
L VW−1

R ), and

U∗ = QN −WLP 1

zN+1H2
(W−1

L V ∗W−1
R )WR ∈

1

zN+1
H2.

(8)
The optimal cost is then given by

||P11 + P12QNP21||2H2
+ ||G(V ∗)||2H2

+ 2 < G(V ∗), T >
(9)

The assumption of a strongly connected graph is key in
the above, as it allows for the optimal controller Q∗ to be
decomposed as the direct sum of a FIR filter V ∗, and a
delayed, but centralized, component U∗ that depends only
on globally available information.

We now present the primal optimization problem that
is solved to obtain the FIR component V ∗ of the optimal
decentralized controller. For ease of notation, let Gi(V ) =
Gi, and H = W−1

L , J = W−1
R . Note that H and J can

be expanded as H =
∑∞
i=0

1
ziHi and J =

∑∞
i=0

1
zi Ji.

Similarly, T and V admit the expansions T =
∑∞
i=1

1
ziTi,

and V =
∑N
i=1

1
ziVi ∈ Y , with each Vi ∈ Yi.1

Lemma 1: (Primal Problem): The FIR transfer matrix
G(V ) can be written as

G(V ) =

N∑

i=1

1

zi
Gi, with Gi =

∑

j,l≥0,k≥1
j+k+l=i

HjVkJl

and, applying Parseval’s identity to (7), we can formulate the
optimization problem as

minimizeV
∑N
i=1 TrGiG

∗
i +2

∑N
i=1 TrGiT

∗
i

s.t. Vi ∈ Yi
(10)

Remark 1: It was shown in [18] that (10) is a convex
quadratic program with a unique solution.

We now apply standard techniques from convex analysis
and optimization to reformulate (10) as a semi-definite
program (SDP) that is more amenable to dualization.

Lemma 2: The quadratic program (10) can be recast as
the following SDP

minimize
{Vi}Ni=1,{Wi}Ni=1

N∑

i=1

TrWi + 2
∑N
i=1 TrGiT

∗
i

s.t.

[
I G∗i
Gi Wi

]
> 0, for i = 1, ..., N

e∗jViek = 0, ∀i, j, k s.t. Yjki = 0

(11)

where ei = [0, ..., I, . . . , 0]T , with the identity matrix I in
the ith position taken to be of appropriate dimension based
on context.
Proof: We first note that Vi ∈ Yi ⇐⇒ e∗jViek =

0 ∀j, k s.t. Yjki = 0. Introducing slack variables {Wi}Ni=1

we rewrite (10) as

minimize
{Vi}Ni=1,{Wi}Ni=1

N∑

i=1

TrWi + 2

N∑

i=1

TrGiT
∗
i

s.t. Wi −GiG∗i > 0, for i = 1, ..., N
e∗jViek = 0, ∀i, j, k s.t. Yi(j, k) = 0

(12)
We complete the proof by applying a Schur-complement

transformation to the inequality constraints.

III. DUAL PROBLEM FORMULATION

Before proceeding to the derivation of the dual problem,
we present the following useful lemma:

Lemma 3: Let Gi be defined as above, and Zi be any
matrix of compatible dimension. Then

N∑

i=1

TrGiZi =

N∑

i=1

∑

j,l≥0,k≥1
k−j−l=i

TrViJlZkHj

Proof: Easily verified using the cyclical property of the trace
operator and the definition of Gi.

We now present the main result of the paper, the dual
formulation of (11).

1The component matrices Hi, Ji and Ti can be easily computed via state
space methods, c.f. [18]



Theorem 3: The dual problem to (11) is given by

maximize
νijk,Xi

−
N∑

i=1

TrXiX
∗
i

s.t.
∑

(j,k)∈Ii
ekν

i
jke
∗
j − 2

∑

j,l≥0,k≥1
k−j−l=i

JlZkHj = 0

for i = 1, ..., N
(13)

where Ii := {(j, k) : Yjki = 0} and Zk = (T ∗k − Xk).
Furthermore, strong duality holds, the dual optimum d∗ is
achieved, and is bounded by 0 ≥ d∗ ≥ −||PX (T )||2H2

.

Proof: Introduce Lagrange multipliers {vijk}i=1,...,N
(j,k)∈Ii and

{χi}i=1,...N with

χi =

[
Xi

11 Xi
12

Xi∗
12 Xi

22

]
≥ 0.

The Lagrangian of (11) can then be written as

L({Wi}, {Vi}; {χi}, {νijk}) =
∑N
i=1 (TrWi + 2TrGiT

∗
i

−Tr

[
Xi

11 Xi
12

Xi∗
21 Xi

22

] [
I G∗i
Gi Wi

]
+
∑

(j,k)∈Ii
Trνijke

∗
jViek




=
∑N
i=1

(
TrWi(I −Xi

22) + 2TrGi(T
∗
i −Xi

12)

−TrXi
11 +

∑

(j,k)∈Ii
TrViekν

i
jke
∗
j




Applying Lemma 3 to
∑N
i=1 TrGiZi and grouping like

terms, the above can be rewritten as

L({Wi}, {Vi}; {χi}, {νijk}) =∑N
i=1

(
TrWi(I −Xi

22) −TrXi
11

)

+
∑

TrVi




∑

(j,k)∈Ii
ekν

i
jke
∗
j − 2

∑

j,l≥0,k≥1
k−j−l=i

JlZkHj




Infimizing the above expression over {Wi}, {Vi}, we see that
it is bounded below if and only if

Xi
22 = I∑

(j,k)∈Ii
ekν

i
jke
∗
j − 2

∑

j,l≥0,k≥1
k−j−l=i

JlZkHj = 0

for all i = 1, ..., N . The dual problem then becomes

maximize
νijk,Xi

−
N∑

i=1

TrXi
11 s.t.

∑

(j,k)∈Ii
ekν

i
jke
∗
j − 2

∑

j,l≥0,k≥1
k−j−l=i

JlZkHj = 0

[
Xi

11 Xi
12

Xi∗
12 I

]
≥ 0, ∀i = 1, ..., N

Applying a Schur-complement argument to the inequality
constraints, we have Xi

11−Xi
12X

i∗
12 ≥ 0, which can be taken

to be equality without loss as the objective is to minimize
TrXi

11. Relabeling Xi
12 as Xi, we obtain (13).

To show that strong duality holds, and that the dual
optimum is achieved, by Slater’s condition, it suffices to
show that (11) admits a strictly feasible point. Indeed, it
is trivially verified that Vi = 0, Wi = εI

Np2q2
, ε > 0, ∀i =

1, ..., N is such a point. We therefore have that the primal
optimal value p∗ ≤ ε for arbitrary ε > 0.

Finally, setting Xi = Ti and νijk ≡ 0, we see that this is
a dual feasible point, with dual objective −∑N

i=1 TrTiT
∗
i =

−||PX (T )||2H2
. Therefore, by strong duality, 0 ≥ p∗ = d∗ ≥

−||PX (T )||2H2
, where d∗ is the dual optimal value

An immediate consequence of the above formulation are
the intuitive inequalities among the different optimization
problems:

Corollary 1: Let C0 be the optimal centralized cost of (7)
with N = 0, Cd the optimal decentralized cost of (5) and
CN be the delayed centralized optimal cost of (7). Then

C0 ≤ Cd ≤ CN
Proof: Note that, from (9) Cd = CN + p∗, where
−||PX (T )||2H2

≤ p∗ ≤ 0 is the optimal value of (11)
and (13). Therefore the inequalilty Cd ≤ CN follows
immediately. It therefore suffices to show that C0 = CN −
||PX (T )||2H2

, but

C0 = ||P11||2H2
− ||T ||2H2

= ||P11||2H2
− ||P 1

zN+1
(T )||2H2

− ||PX (T )||2H2

= CN − ||PX (T )||2H2

A. Further analysis
In this subsection, we explore further properties that can

be inferred from the primal/dual optimization problems.
1) Refined upper and lower bounds: We refine the

a priori upper and lower bounds on the optimal closed loop
norm by finding primal and dual feasible points, respectively.

Lemma 4: Let k ∈ {1, ..., N} and Sk ∈ Yk be fixed. Then
a primal feasible point is given by

Wi = εI +Gi(V )Gi(V )∗, ε > 0
Vk = vkSk
Vi = 0 ∀i 6= k

vk = − βk
αk

with primal objective value (as ε ↓ 0)

pk = −β
2
k

αk
≤ 0 (14)

where

βk =
∑N
i=1

∑
j,l≥0
j+l+k=i

TrHjSkJlT
∗
i

αk =
∑N
i=1

∑
j,l≥0
j+l+k=i

TrHjSkJlJ
∗
l S
∗
kH
∗
j > 0.

Proof: From (12) it is clear that {Wi} and {Vi} are feasible
points. Letting ε ↓ 0, the optimization then reduces to an
unconstrained one over vk:

minimize
vk

v2
k

∑N
i=1

∑
j,l≥0
j+l+k=i

TrHjSkJlJ
∗
l S
∗
kH
∗
j

+2vk
∑N
i=1

∑
j,l≥0
j+l+k=i

TrHjSkJlT
∗
i



which can be solved as αk > 0 (it is the sum of the traces of
positive semi-definite matrices, that are not identically zero).
The optimizer is easily found to be vk = − βk

αk
, resulting in

the primal objective value pk as given in (14).

Lemma 5: Let (j, k) ∈ IN . Then a dual feasible point is
given by

Xi = T ∗,i i = 1, ..., N − 1 (15a)
XN = T ∗N + ∆ (15b)

∆ = −1

2
J−1

0 ekν
N
jke
∗
jH
−1
0 (15c)

νNjk =
Tre∗jH

−1
0 J−1

0 ek

Tre∗kJ
−2
0 eke∗jH

−2
0 ej

I (15d)

νimn = 0, ∀(i,m, n) 6= (N, j, k) (15e)

with dual objective

djk = −||PX (T )||2H2
+

(
Tre∗jH

−1
0 J−1

0 ek
)2

Tre∗kJ
−2
0 eke∗jH

−2
0 ej

(16)

Proof: Defining {Xi} by (15a, 15b), the dual problem then
reduces to

maximize
νNjk,∆

−
(

N∑

i=1

TrTiT
∗
i

)
+ 2TrTN∆∗−Tr∆∆∗

s.t. ekν
N
jke
∗
j + 2J0∆H0 = 0

Noting that H0 = Ω
1
2 > 0, J0 = Ψ

1
2 > 0 by assumption

(c.f. [18] for details), we can solve for ∆ as in (15c), which
reduces the optimization problem to an unconstrained one in
νNjk. Proceeding in a similar manner as the previous proof,
we set νNjk = vI and obtain the minimizer νNjk as in (15d),
resulting in a dual objective of djk as in (16).

With these two lemmas, we can refine the bounds in Corol-
lary 1 to

C0 + max
(j,k)∈IN

γjk ≤ Cd ≤ CN + min
k∈{1,...,N}

pk

where γjk := djk + ||PX (T )||2H2
.

2) Dual variable interpretation and application to com-
munication network design: By applying the shadow price
interpretation to the dual variables {νijk}, we are able to
identify the most active equality constraint indices (i, j, k) =
arg maxi,j,k Tr(νijkν

i∗
jk) (corresponding to the constraint

e∗jViek = 0) imposed by our controller constraint set S.
Eliminating this constraint will therefore result in the greatest
incremental improvement in the optimal closed loop norm.

In this same spirit, suppose that we are interested in iden-
tifying the delay which, if reduced, would yield the best im-
provement in the closed loop norm. Using the same interpre-
tation, we can solve for (N, j, k) = arg maxj,k Tr(νNjkν

N∗
jk ).

This information can be used to inform certain types of
routing decisions, as will be illustrated in Section IV.

3) FIR reconstruction from dual optimal variables: By
strong duality, complementary slackness applies, and we can
therefore relate the dual and primal optimal variables in the

following manner
[
XiX

∗
i Xi

X∗i I

] [
I G∗i
Gi Wi

]
= 0 =⇒ Gi = −X∗i

This relation can be used to solve for the optimal Vi from
the dual optimal variables Xi in a recursive manner. For the
case i = 1, we have

G1 = H0V1J0 = −X∗1 =⇒ V1 = −H−1
0 X∗1J

−1
0 .

Similarly, for i = 2,

G2 = H0V2J0 +
∑
j,l≥0,k=1
j+1+l=i

HjV1Jl = −X∗2
=⇒ V2 = −H−1

0 (X∗2 +
∑
j,l≥0,k=1
j+1+l=i

HjV1Jl)J
−1
0 .

Continuing in this manner, we can solve for any Vi, i ∈
1, ..., N as

Vi = −H−1
0 (X∗i +

∑

j,l≥0,1≤k≤i−1
j+k+l=i

HjVkJl)J
−1
0

This form for the components of the FIR component offers
additional insight into the structure of the controller, making
explicit the interdependence between the {Vi}.

IV. EXAMPLE – 5 SYSTEM RING COMMUNICATION
GRAPH AUGMENTATION

In this section, we consider augmenting the communica-
tion graph of the 5 scalar plant undirected ring system shown
in Figure 2 so as to improve the closed loop norm as much
as possible. This system is described by

Ã =




10 1 0 0 10
1 10 1 0 0
0 1 10 1 0
0 0 1 10 1
1 0 0 10 10



, A = .99Ã

|λmax(Ã)|

B1 =
[
I5 + 99e4e

∗
4 05×5

]

B2 = C2 = I5

C1 =

[
2I5

05×5

]
, D12 =

[
05×5

I5

]

D21 =
[
05×5 I5

]
, D11 = 010×10, D22 = 05×5

We assume that the communication structure mimics the
dynamic structure of the plant, such that the controller
constraint set is given by

S =
1

z




∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗



⊕ 1

z2




∗ ∗ 0 0 ∗
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
∗ 0 0 ∗ ∗



⊕ 1

z3
Rp

The structure of the system is such that it takes one time
step for a node to access its own local measurements (due to
the assumption of strict properness), two time steps to access
an immediate neighbor’s measurements, and three time steps
to access any other node’s measurements. Suppose now that
there is a central router that can provide a directed link
between any two nodes X and Y , such that node X has
access to node Y ’s measurements after two time steps. In



x1
x2

x3x4

x5 R

Fig. 2: The graph depicts the the communication structure of the five-
player ring problem considered in Section IV. The routing/control problem
consists of determining which link the router should establish, and to
compute the optimal H2 decentralized controller. This problem is solved
using the primal/dual methods described in Section III.

this case, it is obvious that the only links to consider are
between nodes that are not immediate neighbors. Using the
previously described shadow price interpretation, we identify
the most active equality constraint on V2 as (2, 1, 4) (i.e.
e∗1V2e4 = 0): |ν2

14| � |ν2
jk| for all other (j, k) ∈ I2. We

therefore eliminate this constraint to yield the new controller
constraint set

S2
14 =

1

z




∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗



⊕ 1

z2




∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
∗ 0 0 ∗ ∗



⊕Rp
z3
.

This is intuitively a reasonable choice, as a larger dis-
turbance enters at node 4 (due to the form of B1) and is
barely attenuated as it propagates around the ring towards
node 1. The optimal H2 closed loop norm with respect to the
original constraint set is 401.7, but drops significantly to 362
if the aforementioned constraint is removed. For comparison,
if we remove the equality constraint e2V2e

∗
4 = 0 (another

reasonable guess based on the structure of the plant), the
optimal cost barely changes, decreasing to 401.6.

V. CONCLUSION

In [18], the decentralized H2 model matching problem
subject to QI delays is solved by decomposing the controller
into a centralized, but delayed, component and a decentral-
ized FIR component, with the latter being solved for via
a linearly constrained quadratic program. We showed how
this problem can be converted to a semi-definite program
(SDP) for which strong duality holds, and derived the dual
problem. We then found primal and dual feasible points
so as to identify a priori upper and lower bounds on the
optimal H2 cost. Exploiting complementary slackness, we
are also able to obtain further insight into the structure of
the optimal FIR component. Finally, we showed how the
optimal dual variables can be used to inform communication
graph augmentation, and illustrated this idea with a routing
problem.

There are many interesting avenues for future work, such
as attempting to identify further refined upper and lower
bounds, as well as delving more into the structure of the
FIR component of the controller. Furthermore, although
the optimal dual variables only provide information about
incremental changes to the communication structure (i.e.

guidance as to which single constraint/delay is most detri-
mental to closed loop performance), it will be interesting
to see whether they can be used to formulate an effective
heuristic for communication graph design.
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