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Abstract: This paper presents a scalable method to design large-scale Kalman-like filters for
a class of linear systems. In particular, we consider systems for which both the propagation
of dynamics through the plant and the exchange of information between estimators/sensors
is subject to delays. Under suitable assumptions on these delays, our proposed Kalman-like
filter has the following desirable properties: (1) each local estimator only needs to collect the
information within a localized region to estimate its local state, and (2) each local estimator
can be designed by solving a local optimization problem using local plant model information.
The decomposition of the global problem into local subproblems thus allows for the method to
scale to arbitrarily large heterogeneous systems – this is clearly an extremely favorable property
for large-scale estimation problems. The effectiveness of our algorithm is demonstrated on a
randomized heterogeneous example with 51200 states, in which the traditional Kalman filter
cannot be computed within a reasonable amount of time.
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1. INTRODUCTION

The celebrated Kalman filter achieves minimum mean
square error for linear state estimation problems via an
elegant and easily interpretable recursive method. Unfor-
tunately, the Kalman filter is an inherently centralized
method, and is neither scalable to compute nor physi-
cally implementable for large-scale systems. Specifically,
the computation of the traditional Kalman filter involves
solving an Algebraic Riccati Equation (ARE) and comput-
ing a matrix inverse, and the information in the network
is assumed to be collected instantaneously by a central es-
timator. Even if a centralized estimator can be computed,
large-scale estimation problems are nonetheless subject
to practical communication delays between sensors and
estimators which can degrade the performance of a cen-
tralized scheme substantially. These limitations make cen-
tralized estimation unappealing in large-scale applications
such as weather forecasting (Farrell and Ioannou (2001)),
ocean data assimilation (Fukumori and Malanotte-Rizzoli
(1995)), biological signal analysis (Long et al. (2006)), and
state estimation in the power grid (Huang et al. (2012)).

Various methods have been proposed in the field of dis-
tributed Kalman filtering, but many still suffer from scal-
ability issues that limit their application to large-scale
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systems. For instance, both the consensus-based algorithm
of Olfati-Saber (2007) and the diffusion-based algorithm
of Cattivelli and Sayed (2010) require each local sensor
to store and use the global plant model, and to estimate
the global state during implementation. This introduces
huge computational burden, and is prohibitive for large-
scale applications. An exception is the work of Khan and
Moura (2008), in which the authors use spatial decomposi-
tion, observation fusion, and approximated algorithms on
matrix inversion to design a scalable Kalman-like filter.
However, the algorithms involve multiple iterations, and
the transient behavior of the algorithm is hard to analyze.

In this paper, we propose a scalable method to design
large-scale Kalman-like filters based on the notion of
localizability for state estimation. This notion can be
viewed as a generalization of observability, in which the
state estimator is restricted to a subspace dictated by
spatiotemporal constraints. Intuitively, when information
can be shared sufficiently quickly among local estimators,
the uncertainty in the state due to local process and sensor
noise can be isolated to a localized region. In other words,
the closed loop response from process and sensor noise to
the estimation error is localized. We show that finding such
a localized closed loop response, if it exists, can be done in
an efficient and scalable manner, and further demonstrate
that the resulting Kalman-like estimator can be designed
and implemented in a localized way. Our main technical
tool is the duality that exists between Kalman Filtering
and Linear Quadratic Regulation (LQR), and use this
duality to formulate the localized distributed Kalman filter
(LDKF) problem as a localized LQR (LLQR) problem
(Wang et al. (2014) and Wang and Matni (2015)).



The rest of this paper is structured as follows. In Section
2, we review the traditional Kalman filter and emphasize
its limitations in the context of large-scale systems. In
Section 3, we reformulate the Kalman filter problem in
terms of the closed loop transfer matrices. We introduce
the idea of localizability for state estimation, and formu-
late the LDKF problem in Section 4. Specifically, LDKF
estimator can be designed and implemented in a localized
and parallel way using techniques developed to solve the
LLQR problem, as described in Wang et al. (2014). To
demonstrate the effectiveness of our method, we synthesize
the LDKF estimator for a system with 51200 states in
Section 5. Finally, conclusions are given in Section 6.

2. TRADITIONAL KALMAN FILTER

This section introduces the system model and the tra-
ditional Kalman filter. We then explain the limitations
of traditional Kalman filter on large-scale systems, which
motivate our work.

2.1 System Model

Consider a discrete time linear time invariant (LTI) system
with dynamics given by

x[k + 1] =Ax[k] +Bu[k] + w[k]

y[k] =Cx[k] + v[k] (1)

where x is the state, u the control input, y the sensor
measurements, w the process noise, and v the sensor
noise. Our goal is to design a state estimator x̂ based
on the measurement y and a pre-specified control input
u. In particular, we are interested in the case when
the system matrices (A,B,C) are high-dimensional yet
suitably sparse. Our approach is to exploit the sparsity of
(A,B,C) to derive a scalable algorithm for state estimator
design.

We adopt to the common setting for Kalman filter (cf.
Anderson and Moore (2012)). Let E(·) be the expectation
operator and δij the Kronecker delta function. We assume
that the process noise w and sensor noise v are indepen-
dent zero mean additive white Gaussian noise (AWGN),
with covariance matrices given by E(w[i]w[j]>) = δijW ,
E(v[i]v[j]>) = δijV , and E(w[i]v[j]>) = 0. We assume
that w and v are uncorrelated to keep the formulas simple,
while the method described in this paper still works when
w and v are correlated. The initial condition x[0] is also
assumed to be a Gaussian random vector with mean x0
and variance Σ0, and x[0] is uncorrelated with w[k] and
v[k] for all k.

2.2 Traditional Kalman Filter

Let x̂[k|s] denote the estimate of the state x[k] given the
collected information up to time s, i.e. the measurements
y[t] and control inputs u[t] from t = 1, . . . , s. The Kalman
filter for the LTI system (1) is specified by

x̂[k|k] = x̂[k|k − 1] +K(y[k]− Cx̂[k|k − 1]) (2)

x̂[k + 1|k] =Ax̂[k|k] +Bu[k] (3)

with initial condition given by x̂[0| − 1] = x0. The matrix
K in (2) is known as the Kalman gain, which can be found

by solving an ARE. Let Σ be the solution to the discrete
time ARE

Σ = AΣA> +W −AΣC>(CΣC> + V )−1CΣA>. (4)

The Kalman gain in (2) can then be computed as

K = ΣC>(CΣC> + V )−1. (5)

The Kalman filter is optimal in the sense of minimum
mean square error. Let x̃[k|k−1] = x[k]− x̂[k|k−1] be the
estimation error before y[k] is measured. The Kalman filter
algorithm in (2) - (3) minimizes the mean square error

E

(
1

N

N∑
k=1

x̃[k|k − 1]>x̃[k|k − 1]

)
(6)

for N → ∞. Similarly, let x̃[k|k] = x[k] − x̂[k|k] be the
estimation error after y[k] is measured. The mean square
error of x̃[k|k] is also minimized.

Equations (2) and (3) can be combined into a single
equation as

x̂[k + 1|k] = Ax̂[k|k − 1] +Bu[k] + L(y[k]− Cx̂[k|k − 1])

(7)

with L = AK is a gain matrix. We refer to (7) as the
delayed form of state estimation. We can also combine
equations (2) and (3) to obtain

x̂[k+1|k+1] = (I−KC)(Ax̂[k|k]+Bu[k])+Ky[k+1]. (8)

We refer to (8) as the current form of state estimation.

2.3 Limitations

Here we point out some limitations of the traditional
Kalman filter for large-scale systems.

(1) The Kalman gain given by (5) is generally dense
even when the system matrices (A,B,C) that specify
the system dynamics (1) are sparse. This means
that the measurements from all sensors need to be
shared instantaneously, which requires infinite (or
impractically fast) communication speed.

(2) A dense Kalman gain (5) also implies that the mea-
surements from all sensor need to be collected by
every estimator in the network, which is not scalable
to implement.

(3) To compute the Kalman gain (5), one need to solve
a large-scale ARE (4). This is not scalable for large
systems.

(4) When the global plant model (A,B,C) changes lo-
cally, one needs to recompute the solution to (4) to
resynthesize the global Kalman filter. This is not scal-
able for incremental design when the physical system
expands.

To design a state estimation algorithm for large-scale sys-
tems, one must overcome the aforementioned limitations
of the traditional Kalman filter. Distributed Kalman fil-
ter architectures in Olfati-Saber (2007) or Cattivelli and
Sayed (2010) may resolve the first two limitations, but
not the latter two. This motivates our development of the
LDKF.

3. ALTERNATIVE FORMULATION

In this section, we use closed loop transfer matrices to
analyze the estimation error dynamics of the Kalman



filter. We then reformulate the traditional Kalman filter
problem as an optimization problem over all valid closed
loop transfer matrices. This new formulation plays an
important role in the derivation of the LDKF.

3.1 Alternative Formulation for the Delayed Form

Consider first the delayed form (7) of the Kalman filter.
Taking the z-transform of equation (7), we get

(zI −A)x̂ = Bu+ L(y − Cx̂). (9)

In the following, we assume that the estimator structure
(9) is fixed, but the gain matrix L is unknown and
needs to be designed. Although the Kalman filter can be
implemented via a static gain L, this is not necessary.
We relax the gain L to be a proper transfer matrix in
the sequel. This extra freedom will be key in allowing us
to incorporate spatiotemporal constraints on the transfer
matrices that define the estimator. Combining (9) and (1),
we have the estimation error dynamics

(zI −A+ LC)x̃ = w − Lv. (10)

Define Mw := (zI − A + LC)−1 to be the closed loop
transfer matrix from process noise w to estimation error x̃,
and likewise let Mv := −MwL be the closed loop transfer
matrix from sensor noise v to estimation error x̃. Equation
(10) can then be rewritten as

x̃ = Mww +Mvv. (11)

Rather than finding a suitable gain matrix L to optimize
the closed loop transfer matrices (Mw,Mv) indirectly,
we instead characterize the set of valid transfer matrices
(Mw,Mv), and instead optimize directly over those sets.
Let Mw[i] denote the ith spectral component of Mw, i.e.
Mw(z) =

∑∞
i=0 z

−iMw[i], and let RH∞ denote the set of
real rational stable proper transfer matrices. The following
Proposition gives a characterization of all valid closed loop
transfer matrices (Mw,Mv), given the estimator structure
(9).

Proposition 1. The closed loop transfer matrices (Mw,Mv)
with finite mean square error can be induced by an esti-
mator with structure (9) if and only if the following two
affine constraints hold.

Mw(zI −A)−MvC = I (12)

Mw,Mv ∈
1

z
RH∞ (13)

Proof. To prove the necessary direction, we show that
(12) and (13) must hold for an estimator with structure (9)
and suitable gain matrix L. Equation (12) can be verified
using the identity Mw(zI−A+LC) = I directly. For (13),
note that the transfer matrices Mw and Mv must be stable
so that the mean square error of the estimator is finite.
Besides, as Mw = (zI−A+LC)−1 and Mv = −MwL, the
transfer matrices Mw and Mv must be strictly proper, i.e.
Mw[0] = 0,Mv[0] = 0. Therefore, (13) must holds.

To prove the sufficient direction, we show that the desired
closed loop response (Mw,Mv) can be induced by an
estimator with structure (9) if (12) and (13) hold. For
any solution of (12) - (13), we construct a gain matrix

L0 = −M−1w Mv for (9). In this case, the estimation error
dynamics (10) become

(zI −A−M−1w MvC)x̃ = w +M−1w Mvv. (14)

Multiplying Mw to both sides of (14) and substituting (12)
into the equation, we can show that the desired closed loop
response (Mw,Mv) is achieved. 2

Proposition 1 suggests that we can implement the esti-
mator using the gain matrix L = −M−1w Mv to achieve
the desired closed loop response. Substituting this identity
back to (9) and multiplying Mw to both sides of the
equation, we get

x̂ = MwBu−Mvy. (15)

This gives a simpler estimator implementation.

Given this characterization of valid closed loop transfer
matrices, we now aim to find an expression for the Kalman
Fitler objective function in terms of Mw and Mv. Using
the error dynamics (11) and the AWGN assumptions on
the noise dynamics, it is straightforward to show that the
mean square error can be expressed in terms of the impulse
response elements of the closed loop transfer matrices as

Trace(

∞∑
i=0

[Mw[i] Mv[i]]

[
W 0
0 V

] [
Mw[i]>

Mv[i]>

]
).

As traditional Kalman filter achieves minimum mean
square error, the closed loop transfer matrices (Mw,Mv)
for the Delayed Form of the Kalman filter must be the
solution to the following optimization problem

minimize
Mw,Mv

Trace(

∞∑
i=0

[Mw[i] Mv[i]]

[
W 0
0 V

] [
Mw[i]>

Mv[i]>

]
)

subject to (12)− (13). (16)

Thus we can view optimization (16) as an alternative
formulation for the Delayed Form of the Kalman filter
problem.

3.2 Alternative Formulation for the Current Form

Consider the current form of Kalman filter in (8). After
some calculations, the closed loop transfer matrices from
noise to the estimation error are shown to be

Mw = (zI −A+KCA)−1(I −KC)

Mv =−(I − 1

z
(I −KC)A)−1K. (17)

For the characterization of all valid closed loop transfer
matrices, we still have the identity (12). The constraint
in (13) changes slightly however, as the transfer matrix
from sensor noise to estimation error Mv is only restricted
to be proper in the Current Form of the Kalman filter.
The estimator equation in (15) remains unchanged. We
can then give an alternative formulation for the Current
Form of the Kalman filter as

minimize
Mw,Mv

Trace(

∞∑
i=0

[Mw[i] Mv[i]]

[
W 0
0 V

] [
Mw[i]>

Mv[i]>

]
)

subject to (12),Mw ∈
1

z
RH∞,Mv ∈ RH∞. (18)



In the interest of space, we only discuss the Delayed Form
of the Kalman filter (16), although all methods described
in this paper work equally well for the Current Form (18).

4. LOCALIZED DISTRIBUTED KALMAN FILTER

In this section, we introduce the notion of localizability for
state estimation and give the LDKF formulation. We then
highlight the key steps to solve LDKF in a scalable manner
using LLQR techniques. Finally, we propose two scalable
ways to implement the LDKF estimator.

4.1 Localizability for State Estimation

Consider the alternative formulation of Kalman filter (16),
with an additional structural constraint S imposed on the
closed loop transfer matrices (Mw,Mv). This leads to the
LDKF optimization problem

minimize
Mw,Mv

Trace(

∞∑
i=0

[Mw[i] Mv[i]]

[
W 0
0 V

] [
Mw[i]>

Mv[i]>

]
)

subject to (12)− (13)

[Mw Mv] ∈ S. (19)

In general, we can use the set S to encode any kind of
spatiotemporal constraints on the closed loop response.
A useful approach for large-scale systems is to impose
sparsity constraints through S, e.g., constraining certain
elements (Mw[i])jk = 0 for some i, j, k. As long as S
is a convex set, optimization problem (19) is convex. If
problem (19) is feasible with a constraint S, then we say
that the system (1) is S-localizable for state estimation.
In other words, the S-localizability for state estimation of
a system is determined by the feasibility of (19).

Example 1 Assume that A in (1) is a tridiagonal matrix,
and B and C are identity matrices. We use S to impose
a tridiagonal sparsity constraint on Mw, and a pentadiag-
onal sparsity constraint on Mv. Under these constraints,
one feasible solution of (19) is given by

Mw = z−1I + z−2A, Mv = −z−2A2. (20)

As each column of Mw/Mv represents the closed loop
response from a local process/sensor noise to the state
estimation error, the sparsity pattern of Mw/Mv in (20)
therefore suggests that the effect of each process/sensor
noise to the state estimation error is localized. 1

Recall that the estimator achieving the desired closed loop
response is given by (15). When a localized closed loop
response exists, the implementation (15) is localized and
thus scalable. This is indicated by the sparsity pattern of
each row of Mw and Mv in (15) – each component of the
state estimate x̂ can be computed by collecting only some
components of the measurement y and the control action
u. In addition, imposing a suitable sparsity constraint S
also allows us to solve optimization problem (19) in a
parallel and localized way (cf. §4.2). In other words, the
sparsity constraints S in (19) can provide scalability both
on estimator implementation and estimator design.

1 It should be noted that we are not localizing the effect of the
process/sensor noise on the state vector. Rather, we are localizing
the state estimation error due to the noise.

Besides the sparsity constraint, we can also use S to
encode a finite impulse response (FIR) constraint or a
communication delay constraint. It should be pointed out
that the observability of a system is determined by the
feasibility of (19) with S being an FIR constraint. Using
this interpretation, we can view observability as a special
case of S-localizability for state estimation.

The communication delay constraint can be encoded
as sparsity constraint on each spectral component of
(Mw,Mv) in (15). This contains the information whether
x̂i[t] has access to the measurement yj [t−τ ] for some i, j, τ .
In this paper, we require the communication speed to be
faster than the speed of noise propagated in the plant, so
that a localized closed loop response can possibly exist. In-
tuitively, when the information can be shared fast enough
among local estimators, the effect of local process noise
and sensor noise on the state vector becomes predictable,
and this effect on the estimation error can possibly be
localized.

4.2 Localized Synthesis

Optimization problem (19) is of the form of a LLQR
problem, and thus can be solved in a localized and scalable
way. The technical details on localized synthesis are almost
identical to the one in Wang et al. (2014) and Wang and
Matni (2015) – this is not surprising given the duality
between Kalman filter design and LQR control. Due to
space constraints, we highlight the key steps and refer the
reader to the aforementioned references for details.

First, note that the objective function and constraints of
optimization problem (19) admit a row-wise decomposi-
tion. Specifically, we can solve for each row of the transfer
matrix [Mw Mv] in an independent and parallel way. We
refer to the optimization problem that solves for each row
of [Mw Mv] as a LDKF subproblem. For each LDKF
subproblem, the locality constraint S further allows us to
reduce the dimension of the problem from global to local
scale. Each LDKF subproblem in the reduced dimension
can then be solved by a local optimization problem using
local plant model information only. This provides a local-
ized, parallel, and scalable estimator design algorithm.

It should be noted that the localized synthesis method is
valid for arbitrary noise covariance matrices (W,V ), i.e.,
even when the noise is globally correlated. In addition,
when the system matrices (A,B,C) change locally, we
only need to resolve some of the LDKF subproblems and
update the estimator locally. It follows that this allows for
the incremental addition of new subsystems to the global
system without the need for a complete redesign of the
estimator.

4.3 Localized Implementation

After solving the LDKF problem, the LDKF estimator
can be implemented using the transfer matrix form (15)
to achieve the desired closed loop response. Another way
to implement the LDKF estimator is given by



zx̂=Ax̂+Bu− β
β = α− αr

α= zMv(y − Cx̂)

αr = (zMw − I)β. (21)

Here, zMv is proper and (zMw − I) is strictly proper,
so the estimator structure is causal and well-defined. It
can be shown that (21) is equivalent to (9) for L =
−M−1w Mv. As Mw and Mv are localized transfer matrices,
the implementation in (21) is localized and thus scalable.
The benefit of (21) over (15) is that (21) is compatible
with the form of an extended Kalman filter, which provides
a possible approach to extend our methods to nonlinear
systems.

5. SIMULATIONS

In this section, we compare the performance of the LDKF
with that of the traditional Kalman filter (KF) through
simulations. We then compute the LDKF estimator for a
randomized heterogeneous system with 51200 states. We
note that the computational bottleneck that we faced in
computing our large scale example was that we were using
a single workstation to compute the estimator (and hence
the LDKF subproblems were essentially solved in serial) –
in practice, if each local estimator is capable of solving its
corresponding LDKF subproblem, our approach scales to
systems of arbitrary size as all computations can be done
in parallel.

5.1 Comparison

We begin with a 20 × 20 mesh topology representing the
interconnection between subsystems, and drop each edge
with probability 0.2. The resulting interconnected topol-
ogy is shown in Fig. 1. The dynamics of each subsystem is
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Fig. 1. Interconnected topology for the simulation example

given by the discretized swing equation for power network
application. Denote xi, yi, wi, vi the state, measurement,
process noise, and sensor noise for ith subsystem, respec-
tively. The dynamics of each subsystem i is given by

xi[k + 1] =Aiixi[k] +
∑
j∈Ni

Aijxj [k] + wi[k]

yi[k] =Cixi[k] + vi[k], (22)

where

Aii =

[
1 ∆t

− ki
mi

∆t 1− di
mi

∆t

]

Aij =

[
0 0

kij
mi

∆t 0

]
, Ci = [1 0] .

The parameters kij , di,m
−1
i are randomly generated and

uniformly distributed between 0.2 and 1. In addition, we
set ∆t = 0.2 and ki =

∑
j∈Ni

kij . The global plant

model (1) can be constructed by (22). The process and
sensor noise in (1) are zero mean AWGNs with covariance
matrices being identity. The initial condition x[0] is zero
mean Gaussian with covariance matrix given by 9I. The
instability of the plant is characterized by the spectral
radius of the matrix A, which is 1.0387. In this example,
the number of states and measurements are 800 and 400,
respectively.

The S constraint for the LDKF scheme is enforced as
follows. Each local process noise is only allowed to affect
the estimation error up to its neighboring subsystems, and
each sensor noise is allowed to affect the estimation error
up to its two-hop neighbors. This means that each sub-
system needs to communicate up to its two-hop neighbors
during implementation, and use the plant model up to its
two-hop neighbors for estimator synthesis. For communi-
cation delays, we assume that x̂i[t] can access yj [τ ] at time
τ ≤ t − k if subsystem (i, j) are k-hop neighbors. As the
disturbance takes two steps to propagate to its neighboring
subsystems, the communication speed is twice faster than
the speed of disturbance propagation. We impose the FIR
constraint with length T = 15.
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Fig. 2. The vertical axis represents the expected mean
square error of the estimation, and the horizontal axis
represents the time step. The expectation is simulated
over 1000 Monte Carlo trials.

We perform 1000 Monte Carlo trials for both the tra-
ditional KF and the LDKF. The expected mean square
error (MSE) at each time step is shown in Fig. 2. Recall
that the covariance matrix for x[0] is given by 9I, and
the number of states is 800. Theoretically, the expected
MSE for the first time step is 7200, which agrees with our
simulation. Our simulation shows that the performance of
LDKF is almost identical to that of the traditional KF,
even when the imposed constraint S is highly sparse. In
this example, the theoretical steady state MSE for the
traditional KF is 2739.8, and that of the LDKF is 2767.2.
In terms of the MSE, LDKF estimator has 1% performance
degradation. However, we get huge benefits in terms of
estimator synthesis and implementation.
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Fig. 3. The horizontal axis represents the number of state,
and the vertical axis represents the computation time
in seconds.

To further illustrate the advantages of the LDKF, we
compare the LDKF with the traditional KF in terms of
closed loop performance, estimator synthesis, and estima-
tor implementation. The results are summarized in Table
1. It can be seen that the LDKF has significant advantages
over the traditional KF in all aspects, except for the 1%
performance degradation in MSE.

Table 1. Comparison Between Traditional KF
and LDKF

Traditional LDKF

Affected region Global 2-hop
Closed Loop Affected time Long 15 steps

Normalized MSE 1 1.01

Comp. complexity O(n3) O(n)
Comp. time (s) 64.4 5.4

Synthesis Time per node (s) 64.4 0.014
Plant model Global 2-hop
Redesign Offline Real-time

Implementation Comm. Speed Inf 2
Comm. Range Global 2-hop

5.2 Large-Scale Example

We change the size of the mesh network and compare
the computation time between the traditional KF and the
LDKF. The result is shown in Fig. 3. For the LDKF, we
use parallel for loop in MATLAB with four workers. From
Fig. 3, the LDKF for a system with 51200 states can be
computed in 23 minutes using a standalone workstation.
If the computation is parallelized across all subsystems,
as indicated by Fig. 3, the synthesis algorithm can be
computed within 0.1 seconds.

6. CONCLUSION

In this paper, we proposed the localized distributed
Kalman filter (LDKF) architecture, which is a scalable
algorithm for large-scale state estimation in localizable
systems. LDKF offers various benefits over traditional and
distributed Kalman filters, as the estimator can be both
designed and implemented in a localized, parallel, and
scalable way. The LDKF algorithm is demonstrated on
a randomized heterogeneous system with 51200 states,
where the traditional method cannot be computed within
a reasonable time period.

It should be noted that the locations of the sensors and
the communication allowed between local estimators play
an important role on the localizability of a system, which
affects the effectiveness of our method significantly. In the
future, we plan to adopt to the Regularization for Design
framework of Matni and Chandrasekaran (2015), which
has been successfully applied for actuator placement in
the context of LLQR control by Wang et al. (2015), to
co-design the location of sensors and the LDKF estimator
simultaneously.
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