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Abstract— It has been shown that in the case of finite games,
games with a small Maximum Pairwise Difference (MPD) to a
potential game share some of their favorable static and dynamic
characteristics. In this paper, we extend these results to games
in which strategy sets can be either finite, or closed intervals
of the real line; and utility functions are polynomials in the
players’ actions. We define a notion of distance in the space
of polynomial games in terms of the Maximum Differential
Difference (MDD) between two games, and relate this concept
to their MPD. We also show that a nearby polynomial potential
game can be obtained from the solution of a semidefinite
program.

We then use polynomial potential games to study the static
and dynamic properties of nearby polynomial games. In par-
ticular, we relate the approximate equilibria and approximate
better response dynamics of a polynomial game to those of a
nearby polynomial potential game in terms of their MDD.

I. INTRODUCTION AND MOTIVATION

Potential games are a well studied and useful class of
games, as they have very appealing static and dynamic
properties. Specifically, such games always possess pure-
strategy Nash equilibria, and many simple user dynamics
(e.g. best response) converge to a Nash equilibrium [2],
[10]. As further motivation, potential games (and relaxations
thereof) have been used successfully in modeling systems un-
der cooperative control, allowing for the application of well
established game theoretic methods to difficult distributed
control problems [3], [4], [5].

Presumably, games that are “close” to potential games
should share some of these appealing static and dynamic
characteristics. Previous work [1], [6], [7] has formalized this
idea, and shown that indeed in the case of games with finite
strategy and player sets, a near-potential game’s properties
can be inferred from a nearby potential game approximation.

Although the finite player condition is not a restrictive
one in a control setting, that of finite action sets can be –
most systems of interest are governed by continuous (analog)
dynamics, and therefore have continuous action sets. By
restricting continuous systems to finite action sets, there
is a tradeoff between the level of discretization, system
performance, and problem complexity resulting from the
potentially large cardinality of the discretized strategy set.

Although infinite games avoid these issues, they are inher-
ently less tractable to study, as their analysis often requires
solving infinite dimensional optimization problems – for
example, only recently have useful results on the value and
optimal strategies for certain classes of infinite games [8],
[9] been developed.
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In this work, our goal is to extend the ideas introduced in
[1], [6], [7] to a particular class of infinite games: namely
strategic (noncooperative) games with (i) both finite actions
sets, and continuous action sets that are closed intervals of
the real line; and (ii) polynomial cost functions. We begin
by studying continuous games, that is those in which all
actions sets are closed intervals of the real line. We combine
results from game theory, algebraic geometry, and convex op-
timization, to develop a computationally tractable projection
framework for finding a nearby polynomial potential game
approximation of an arbitrary polynomial game. Specifically,
we introduce the Maximum Differential Difference (MDD)
as a useful measure of “distance” between two continuous
games, and show that the problem of projecting onto the
space of continuous polynomial potential games with respect
to the MDD can be cast as an optimization problem that is
amenable to a sum of squares (SOS) relaxation.

We then extend this framework to games in which some
or all of the action sets are finite by defining the contin-
uous relaxation of such a game. We show how to use the
MDD between a nearby polynomial potential game and the
continuous relaxation of a game to bound the Maximum
Pairwise Distance (MPD) (an analogous concept to the
MDD, introduced in [6] for studying finite games) between
the original game and the nearby polynomial potential game.

Next, we relate the static and dynamic properties of our
initial game to the nearby polynomial game found by our
projection framework. We show that the approximate equi-
libria, as well as the approximate better response dynamics in
arbitrary polynomial strategic-form games can be analyzed
using a nearby polynomial potential game. Not surprisingly,
the closer a game is to being a continuous potential game,
the tighter our characterization becomes.

This paper is organized as follows: in Section II we
present the necessary game-theoretic and algebraic geometry
background. Section III formally defines the MDD, MPD
and continuous relaxation of a game, and introduces the
projection framework for finding nearby polynomial potential
games. In Section IV, we establish connections between an
arbitrary polynomial game’s static and dynamic properties
and those of a nearby polynomial potential game. Section
V presents an example demonstrating our results. Finally,
Section VI provides conclusions and directions for future
work.

II. PRELIMINARIES

A. Game Theory and Potential Games

A (noncooperative) polynomial game in strategic form
consists of:



• A finite set of players, denoted N = {1, ..., N}
• Strategy spaces: each player n ∈ N has strategy set
En ⊂ R. We denote the space of strategy profiles as
E =

∏
n∈N E

n. Let xn ∈ En denote the strategy of
player n.

• Utility functions: un : E → R, un ∈ R[x], where R[x]
denotes polynomials in x1, ..., xN with real coefficients.

A polynomial game is said to be
i) continuous if for each n ∈ N , En is a closed interval

of the real line. In this case we say that the strategy set
En is continuous.

ii) finite if for each n ∈ N , |En| <∞. In this case we say
that the strategy set En is finite.

iii) mixed if there exist c, f ∈ N , such that Ec is
continuous and Ef is finite.

Throughout this paper, we assume without loss of generality
that continuous action sets are given by [−1, 1], and that
finite actions sets lie within [−1, 1].

Following the notation in [1], a game instance can then be
defined by the tuple (N , {un}n∈N , E). For a strategy profile
x ∈ E, we will often write x = (xn, x−n), where x−n is a
vector containing the strategies of all players except for the
nth one.

We now introduce a standard extension to the basic notion
of a Nash Equlibrium (NE) – that of an (additive) ε-
equilibrium.

Definition 1: A strategy profile x ∈ E is an ε-equilibrium
if ∀n ∈ N

un(xn, x−n) ≥ un(yn, x−n)− ε ∀yn ∈ En (1)

Note that this definition corresponds to a pure NE for ε = 0.
We next define polynomial potential games (definitions

modified from [2])
Definition 2: Consider a polynomial game G =

(N , {un}n∈N , E). If there exists a potential function
P : E → R, P ∈ R[x] such that for every n ∈ N , x ∈ E,
yn ∈ En

P (xn, x−n)− P (yn, x−n) = un(xn, x−n)− un(yn, x−n)
(2)

then G is a(n) (exact) polynomial potential game.
A useful characterization of continuous polynomial poten-

tial games in terms of algebraic constraints is given by the
following (modified from [2])

Theorem 1: Let G be a continuous polynomial game as
defined above. Then G is a potential game with potential
function P if and only if P is continuously differentiable,
and

∂un

∂xn
=

∂P

∂xn
∀n ∈ N (3)

Clearly if we restrict P to be in R[x] the above smoothness
conditions are satisfied, and Theorem 1 provides a full
characterization of continuous polynomial potential games.

We conclude with a well known convergence result which
will be fundamental in our analysis of dynamic properties of

polynomial games [10]:
Theorem 2: (Zangwill’s Convergence Theorem) Let f :

X ⇒ X define an algorithm that, given x0 ∈ X , generates
a sequence {xk} via xk+1 ∈ f(xk). Let a compact solution
set Y ∗ ∈ X be given. Let

1) {xk} be a compact subset of X
2) ∃ a continuous function α : X → R such that

a) if x /∈ Y ∗ then α(x′) > α(x) for all x′ ∈ f(x)
b) if x ∈ Y ∗ then α(x′) ≥ α(x) for all x′ ∈ f(x)

3) f is closed at x if x′ /∈ Y ∗ for all x′ ∈ f(x)

Then either {xk} arrives at a solution in Y ∗ or every limit
point of {xk} is in Y ∗.

This theorem can be used to show, for example, conver-
gence of potential games under best response dynamics to
NE, by setting α to the potential function of the game, f to
the best response dynamics and Y ∗ to the set of NE [10].

B. Sum of Squares and Non-Negativity of Polynomials

This subsection, adapted from [11], provides a brief sum-
mary of two key results from algebraic geometry that are
necessary for our development.

Definition 3: A polynomial p ∈ R[x] admits a sum of
squares (SOS) decomposition if there exists a set of polyno-
mials fk, k = 1, ...,K such that

p(x) =

K∑
k=1

f2
k (x) (4)

Let PN,m denote the set of nonzero forms (i.e. polyno-
mials of homogeneous degree) in N variables of degree
m, with coefficients in R that are non-negative on RN ,
and let ΣN,m denote the set of SOS polynomials in N
variables of degree m (note that m is necessarily even in both
cases). Clearly, ΣN,m ⊂ PN,m, with the containment being
strict in general, although exceptions do exists (c.f. Chapter
4.2, [11]). However, in contrast with the NP-hardness of
determining the non-negativity of a general polynomial, SOS
polynomials can be characterized through a semidefinite
program (SDP).

Finally, the following lemma provides algebraic con-
straints that are sufficient (and in certain cases, necessary)
conditions for a polynomial to be non-negative over the
hybercube [−1, 1]N .

Lemma 1: Let p ∈ R[x]. If there exist {λ0, λ1, ..., λN} ∈⋃
m≥0

ΣN,m such that

p(x) = λ0 +

N∑
i=1

λi(1− x2
i ) (5)

then p(x) ≥ 0 on [−1, 1]N .
Proof: Invoke the Positivstellensatz as in [11], [12]

III. PROJECTION FRAMEWORK

A. The Maximum Differential Difference

We begin by defining the Maximum Differential Difference
between two continuous games:



Definition 4: Let G and Ĝ be two continuous polynomial
games with set of players N and collections of utility
functions {un}n∈N and {ûn}n∈N , respectively. The Max-
imum Differential Difference (MDD) between these games
is defined as

MDD(G, Ĝ) := sup
n∈N ,x∈E

∣∣∣∣∂un∂xn
(x)− ∂ûn

∂xn
(x)

∣∣∣∣ (6)

The MDD captures how different two games are in terms
of the utility improvements due to infinitesimal unilateral
deviations.

The MDD can be seen as an extension to continuous
games of the MPD [6] between two games, defined as

MPD(G, Ĝ) :=
sup

n∈N ,yn∈En,x∈E
|(un(yn, x−n)− un(xn, x−n))−

(ûn(yn, x−n)− ûn(xn, x−n))|
(7)

Although originally used to study the properties of finite
games, the MPD is equally applicable to continuous games,
although in general, computing the MPD of two continuous
games is intractable as it results in an infinite dimensional
optimization problem. We can however bound the MPD of
two continuous games in terms of their MDD.

Lemma 2: Let G and Ĝ be two continuous polynomial
games satisfying MDD(G, Ĝ) ≤ γ. Then MPD(G, Ĝ) ≤ 2γ.

Proof: Let n ∈ N , yn ∈ En, x ∈ E be arbitrary. Then

|(un(yn, x−n)− un(xn, x−n))−
(ûn(yn, x−n)− ûn(xn, x−n))|

=

∣∣∣∣∣
∫ xn

yn

∂un

∂τn
(τn, x−n)− ∂ûn

∂τn
(τn, x−n)dτn

∣∣∣∣∣
≤
∫ 1

−1

∣∣∣∣∂un∂τn
(τn, x−n)− ∂ûn

∂τn
(τn, x−n)

∣∣∣∣dτn
≤ γ

∫ 1

−1
dτn = 2γ

(8)

As n ∈ N , yn ∈ En, x ∈ E were arbitrary, the claim
follows.

B. Projection Framework for Continuous Polynomial Games

The problem to be addressed in this section can be
formally defined as

Problem 1: Given a continuous polynomial game G, find
the continuous polynomial potential game Ĝ which mini-
mizes MDD(G, Ĝ). This can be formulated as the following
optimization problem:

inf
P,{ûn}n∈N∈R[x]

sup
n∈N ,x∈E

∣∣∣∣∂un∂xn
(x)− ∂ûn

∂xn
(x)

∣∣∣∣ s.t.

P (xn, x−n)− P (yn, x−n) = ûn(xn, x−n)− ûn(yn, x−n)
∀n ∈ N , x ∈ E, yn ∈ En

(9)
We now present the main result of this section, which

provides a tractable semidefinite relaxation of (9).
Theorem 3: Let G = (N , {un}n∈N , E = [−1, 1]N ) be a

continuous polynomial game, and let (γ, P, {ûn}n∈N ) be

solutions to the following SOS program

inf
P,{ûn}n∈N∈R[x],{λn

±i}
i=0,...,N
n∈N ∈ΣN ,γ∈R

γ s.t.

∂ûn

∂xn (x) = ∂P
∂xn (x) ∀n ∈ N , x ∈ E

λn±0 +
∑N
i=1 λ

n
±i(1− x2

i ) = γ ± (∂u
n

∂xn (x)− ∂ûn

∂xn (x))
∀n ∈ N , x ∈ E

(10)
Then MDD(G, Ĝ) ≤ γ, where Ĝ = (N , {ûn}n∈N , E) is a
polynomial potential game with potential function P .

Proof: We begin with (9) and apply Theorem 1 to
rewrite it as

inf
P,{ûn}n∈N∈R[x]

sup
n∈N ,x∈E

∣∣∣∣∂un∂xn
(x)− ∂ûn

∂xn
(x)

∣∣∣∣ s.t.

∂ûn

∂xn (x) = ∂P
∂xn (x) ∀n ∈ N , x ∈ E

(11)

The two problems are equivalent, in that both constraints
guarantee that P is a potential function for the game gener-
ated by {ûn}. We now introduce a slack variable γ to rewrite
(11) as

inf
P,{ûn}n∈N∈R[x],γ∈R

γ s.t.

∂ûn

∂xn (x) = ∂P
∂xn (x) ∀n ∈ N , x ∈ E

γ ± (∂u
n

∂xn (x)− ∂ûn

∂xn (x)) ≥ 0 ∀n ∈ N , x ∈ E
(12)

Applying Lemma 1 to the last two constraints of (12), with
p±(x) = γ ± (∂u

n

∂xn (x) − ∂ûn

∂xn (x)) yields the desired result.

This SOS program can be solved efficiently using SOSTools
[13].

We note that (10) has 3N constraints, and thus this aspect
of the problem scales well with N . The issue arises in the
number of optimization variables required to represent the
various polynomials: a form of degree m in N variables
is expressed as a sum of

(
N+m−1

m

)
monomials. The number

of optimization variables required grows super-exponentially
in N , limiting the size of player sets that this procedure
can handle in general games – however often times there
will be additional structure that can be exploited (such as
symmetry in the utility functions, see Section V) to alleviate
this problem.

We conclude this section with an illustrative example
Example 1: We consider the two player polynomial game

G = ({1, 2}, {u1(x1, x2), u2(x1, x2)}, [−1, 1]2) with

u1(x1, x2) = .1x1(x2 + (x2)2

2 ) + (x1 − .5)2

u2(x1, x2) = .1x2(x1 + (x1)2

2 )
(13)

We solved the SOS program (10) to obtain a polynomial po-
tential game Ĝ = ({1, 2}, {û1(x1, x2), û2(x1, x2)}, [−1, 1]2)
satisfying MDD(G, Ĝ) ≤ .025, with

P (x1, x2) = (x1)2 + .1x1x2 − .975x1 + .025x2

û1(x1, x2) = (x1)2 + .1x1x2 − .975x1

û2(x1, x2) = .1x1x2 + .025x2

(14)
It is easily verified that P , û1 and û2 satisfy Theorem 1.
Furthermore, just to make explicit that in this case, indeed



MDD(G, Ĝ) = .025, observe that

∂(u2 − û2)

∂x2
(x1, x2) = .1

(x1)2

2
− .025 (15)

which attains its maximum value of .025 at x1 = ±1.

C. Extensions to Finite and Mixed Polynomial Games

We begin by arguing that naive extensions of the previous
framework to mixed polynomial games are intractable. In
particular, since the strategy sets are not all closed intervals
of the real line, Theorem 1 is no longer applicable; further-
more, the constraints imposed on P and {ûn} by Definition
2 are intractable, as although they are linear, they are infinite
dimensional.

Motivated by this issue, we introduce the notion of a
continuous relaxation of a mixed or discrete game.

Definition 5: Let G = (N , {un}n∈N , E) be a mixed or
discrete game. We say that G̃ = (N , {un}n∈N , [−1, 1]N ) is
the continuous relaxation of G.

We can now extend the previous framework to mixed (and
discrete) games.

Corollary 1: Let G = (N , {un}n∈N , E) be a mixed (or
discrete) polynomial game, G̃ its continuous relaxation, and
Ĝ the solution to (10) satisfying MDD(G̃, Ĝ) ≤ γ. Then
MPD(G, Ĝ) ≤ 2γ.

Proof: As E ⊂ [−1, 1]N , MPD(G, Ĝ) ≤ MPD(G̃, Ĝ).
Given is MDD(G̃, Ĝ) ≤ γ, and so by Lemma 2,
MPD(G̃, Ĝ) ≤ 2γ.

Remark 1: Corollary 1 is equally applicable to finite poly-
nomial games, and is especially useful for those in which
|En| >> 1. In particular, if we assume that for all n,
|En| = C >> 1, then Definition 2 imposes O(CN ) equality
constraints on any optimization problem aimed at finding
a nearby potential game, a number that quickly becomes
intractable for even small player sets. Corollary 1 provides
an attractive alternative to this.

Example 2: We consider the same game G as in Example
1, except now restrict the action set of player x2 to be
E2 = {−1,−.99,−.98, ..., .98, .99, 1}. Invoking Corollary
1, we know that the polynomial potential game Ĝ obtained
in Example 1 satisfies MPD(G, Ĝ) ≤ .05. Furthermore, we
note that in this case MPD(G, Ĝ) = .05, as

(u1(x1, x2)− u1(z, x2))− (û1(x1, x2)− û1(z, x2))

= (2(x2)2−1)(x1−z)
40

(16)
which achieves its maximum at the allowable strategy
(x1, x2, z) = (1, 1,−1). This also demonstrates that the
bound in Lemma 2 is indeed tight.

IV. STATIC AND DYNAMIC PROPERTIES OF
NEAR-POTENTIAL POLYNOMIAL GAMES

A. Static Properties

We begin with a lemma relating the ε-equilibria of a game
to those of its continuous relaxation.

Lemma 3: Let G = (N , {un}n∈N , E) be a polynomial
game, G̃ its continuous relaxation and y be an ε1-equilibrium

of G̃. Then z(y) is an ε-equilibrium of G with ε ≤ ε1 +
2D||z − y||1, where

D := sup
n,m∈N ,x∈[−1,1]N

∂un

∂xm
(x)

z(y) := arg min
z∈E
||z − y||1

(17)

Proof: Let s1 : [0, 1] → E be defined by s1(t) =
y + t(z − y), and similarly let s2(t) = x̃+ t(x− x̃). Notice
then that for any x = (xn, z−n), x̃ = (xn, y−n)

un(z)− un(x)

= un(y)− un(x̃) +
∑
m∈N

∫ 1

0

∂un

∂xm
(s1(t))(zm − ym)dt

−
∑
m∈N

∫ 1

0

∂un

∂xm
(s2(t))(x̃m − xm)dt

≤ ε1 + 2D||z − y||1
(18)

where the last inequality follows from the definitions of D,
z and x̃, and the fact that y is an ε1-equilibrium of G̃. As
any increase due to a unilateral deviation from z is bounded
above by ε1 + 2D||z − y||1, the result is proved.

Remark 2: Although in general computing D is in-
tractable, an upper bound can be obtained using Lemma 1
and SOS methods [12].

The 2D||z − y||1 term can thus be interpreted as the
“quantization penalty” incurred by using the continuous
relaxation of the original game in our analysis.

We now relate the ε-equilibria of two nearby games.
Proposition 1: Let G = (N , {un}n∈N , E) be a poly-

nomial game, G̃ its continuous relaxation and Ĝ =
(N , {ûn}n∈N , [−1, 1]N ) a continuous potential polynomial
game such that MDD(G̃, Ĝ) ≤ γ. Then for every ε1-
equilibrium y of Ĝ, z(y) as defined in (17) is an ε-equilibrium
of G with ε ≤ 2γ + ε1 + 2D||z − y||1.

Proof: Let y be an ε1-equilibrium of Ĝ, and let x =
(xn, z−n) for some player n ∈ N and some unilateral
deviation xn ∈ En. Then by Lemma 3

(ûn(z)− ûn(x)) ≤ ε1 + 2D||z − y||1 (19)

We now write

un(z)− un(x) = (un(z)− ûn(z))− (un(x)− ûn(x))
+(ûn(z)− ûn(x))

≤ MPD(G, Ĝ) + ε1 + 2D||z − y||1
≤ 2MDD(G̃, Ĝ) + ε1 + 2D||z − y||1
≤ 2γ + ε1 + 2D||z − y||1

(20)
As the improvement due to a unilateral deviation from z by
an arbitrary player is bounded above by 2γ+ε1+2D||z−y||1,
z is indeed an ε-equilibrium of G with ε ≤ 2γ+ε1 +2D||z−
y||1.

In the case where the original game G is continuous, one
can always pick z = y, and Proposition 1 reduces to

Corollary 2: Let G be a continuous game, Ĝ be as in
Proposition 1, and y be an ε1-equilibrium of Ĝ. Then y is
an ε-equilibrium of G with ε ≤ 2γ + ε1.



Using Theorem 3, given an arbitrary polynomial game
G, we can generate a nearby potential game Ĝ satisfying
MDD(G, Ĝ) ≤ γ for some finite γ ≥ 0. For continuous
games, the local maxima of P correspond to NE of Ĝ, which
by Corollary 2 are then 2γ-equilibria of G.

B. Dynamic Properties

We next show that dynamics in an arbitrary polynomial
game can be characterized using a nearby polynomial po-
tential game. We first define ε-better response dynamics [1]:

Definition 6: In ε-better response dynamics, updates take
place in a round robin manner, and at any update only a
single user can modify its strategy. If there exist strategies
which improve the updating player’s utility by at least ε > 0,
then said player updates to one such strategy – otherwise it
does not modify its strategy.
In the following proposition (analogous to Prop. 7 in [1]),
we show that for an arbitrary polynomial game, ε-better
response dynamics converge to an ε-equilibrium, where ε
is determined by the game’s MDD to a polynomial potential
game.

Proposition 2: Let G be an arbitrary polynomial game, G̃
its continuous relaxation, and let Ĝ be a nearby polynomial
potential game satisfying MDD(G̃, Ĝ) ≤ γ. Then after a
finite number of round-robin iterations, the ε-better response
dynamics will be confined to the ε-equilibrium set of G, with
ε = 2γ + δ, for arbitrary δ > 0.

Proof: If the ε-equilibrium set is reached, by the
definition of the dynamics, no player modifies its strategy
– thus it is sufficient to show that the dynamics reach this
set starting from an arbitrary strategy profile.

Let {un} and {ûn} be the utility functions of G and Ĝ
respectively. Let player n be the updating player, which only
modifies its strategy profile from xn to yn if

un(yn, x−n)− un(xn, x−n) ≥ ε > 2γ (21)

Then using similar reasoning as in the proof of Proposition
1, it follows that

ûn(yn, x−n)− ûn(xn, x−n)

≥ un(yn, x−k)− un(xn, x−n)− 2MDD(G̃, Ĝ)
≥ ε− 2γ > 0

(22)

Every time that an update occurs, the potential function P
of Ĝ increases – thus, no strategy profile can be visited twice
by this update process. If the 2γ-equilibrium set has not been
reached, then at each round robin a player that can improve
its payoff is found. Applying Theorem 2 with f defined
as the strategy updates of players under 2γ-better response
dynamics, X = E, Y ∗ the 2γ-equilibrium set (which is
closed and bounded and hence compact), and α = P , we see
that the dynamics will either converge to the 2γ-equilibrium
set, or every limit point of these dynamics is in the 2γ-
equilibrium set. In the latter case, due to the smoothness
of polynomials, after finitely many iterations, the dynamics
will be confined to the (2γ+δ)-equilibrium set, for arbitrary
δ > 0, proving the result.

V. EXAMPLE: DISTRIBUTED POWER MINIMIZATION

Consider the N player mixed polynomial game GN de-
fined by
• N = {1, 2, ..., N}
• En ⊂ [−1, 1]
• un(x) = − 1

10 (xn − xn0 )2 − 1
20 (xn − xn+1)2

where the index set is understood to be cyclical (i.e. xN+1 =
x1; x−1 = xN ), and xn0 ∈ En are randomly assigned
nominal positions. This game can be interpreted as agents
or sensors attempting to minimize the power needed to
communicate (via a weighted directed cyclical graph, see
Figure 1) with (i) each other, and (ii) with their respective
“base stations” located at xn0 , by optimizing their positions
within En ⊂ [−1, 1].

Noting that there is a high degree of symmetry in the
utility functions of GN , we solve (10) with G̃N for N = 3,
and once again exploit the symmetry present in the approx-
imating potential game Ĝ3, to obtain a polynomial game
approximation ĜN , satisfying MDD(G̃N , ĜN ) ≤ .1, and by
Lemma 2, MPD(GN , ĜN ) ≤ .2, with potential function PN
and utility functions ûn given by

• PN (x) =

N∑
n=1

− 1

20

(
3(xn)2 − xnxn+1 − 4xnxn0

)
• ûn(x) = − 1

20

(
3(xn)2 − xnxn+1 − xnxn−1 − 4xnxn0

)
Given this polynomial potential game, we can solve for the

unique maximizer x∗ of PN (x) (∇2PN < 0) to identify a
.2-equilibria of GN . Alternatively, we can invoke Proposition
2, and run .2-better response dynamics – shown in Figure 1
are the final positions xbr computed by these dynamics for
N=100.

We can also compare the performance of (i) .2-better
response dynamics, a completely decentralized update rule
requiring no a priori knowledge of x0, with (ii) a centralized
optimization with respect to a nominal vector x0. Specifi-
cally, we consider the cost function

J(x) = −
∑
n∈N

un(x) (23)

and compute x∗ as the solution to the convex program

minimizex∈[−1,1]NJ(x) (24)

For this particular choice of x0, we have J(xbr) = 5.8884
and J(x∗) = 4.8701 – although the centralized optimization
performs approximately 20% better than the better response
dynamics, we note that this method requires exact knowledge
of x0 a priori, and is limited in the number of agents it can
handle. The better response dynamics, on the other hand,
require no a priori or centralized knowledge of x0, and are
completely distributed, making them scalable to arbitrarily
large player sets.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a framework for the analysis of arbitrary
polynomial games in terms of “nearby” continuous potential
polynomial games. We defined the Maximum Differential
Difference of two continuous game and showed that the
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Fig. 1. Communication graph for distributed power minimization example
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problem of finding a nearby continuous potential game with
respect to this pseudo-metric can be formulated as an SOS
program, which can be solved in polynomial time. We then
introduced the concept of a continuous relaxation of a mixed
(or discrete) game, allowing us to extend this projection
framework to mixed (and discrete) games, and used the MDD
to bound the Maximum Pairwise Difference of two arbitrary
games.

We then showed that the static and dynamic properties
of an arbitrary polynomial game can be analyzed in terms
of a nearby continuous polynomial potential game – not
surprisingly, the closer the original game is to its continuous
potential approximation, the tighter the characterization.

There are many interesting avenues for future work. It
was shown in [1] that projecting onto the set of weighted
potential games results in a tighter characterization of the
original game’s static and dynamic properties – extending
our projection framework to weighted potential polynomial
games would be a logical next step. Since the space of
weighted potential games is inherently non-convex (product
terms between the weights and the partial derivatives of the
potential function appear in the constraints), the challenge
will be in finding a good convex relaxation. There are
also additional static properties, such as mixed-equilibria,

efficiency notions (price of anarchy, price of stability, etc.),
and other update rules, that we can attempt to analyze under
this framework.

Finally, we would like to point out that although we have
restricted our attention to games where continuous strategy
sets are closed intervals, and cost/potential functions are
polynomials, several fairly straightforward extensions based
on standard SOS/algebraic results are possible. For example,
we can directly extend the results presented to continuous
strategy sets that are finite unions of intervals.
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