
1

A Control-Theoretic Approach to In-Network
Congestion Management

Ning Wu, Yingjie Bi, Nithin Michael, Ao Tang, John C. Doyle and Nikolai Matni

Abstract—WANs are often over-provisioned in order to ac-
commodate worst-case operating conditions, with many links
typically running at only around 30% capacity. In this paper,
we show that in-network congestion management can play an
important role in increasing network utilization. To mitigate the
effects of in-network congestion caused by rapid variations in
traffic demand, we propose using High Frequency Traffic Control
(HFTraC) algorithms that exchange real-time flow rate and
buffer occupancy information between routers to dynamically
coordinate their link-service rates. We show that the design of
such dynamic link-service rate policies can be cast as a distributed
optimal control problem that allows us to systematically explore
an enlarged design space of in-network congestion manage-
ment algorithms. This also provides a means of quantitatively
comparing different controller architectures: we show, perhaps
surprisingly, that centralized control is not always better. We
implement and evaluate HFTraC in the face of rapidly varying
UDP and TCP flows, and in combination with AQM algorithms.
Using a custom experimental testbed, a Mininet emulator, and
a production WAN we show that HFTraC leads to up to 66%
decreases in packet loss rates at high link utilizations as compared
to FIFO policies.

I. INTRODUCTION

Wide area network operators must keep packet loss levels
very low [1] while network traffic cycles through periods of
both high and low demand [2]. In order to meet these and
other service level agreements (SLAs) (e.g., restrictions on
latency, jitter, etc.) in the face of variable and unpredictable
traffic demand, WANs are often over-provisioned in order to
accommodate a wide range of possibilities that include both
normal and worst-case conditions. Naturally, this conservative
approach results in low average utilization, with many network
links typically running at around 30% capacity. As network
operators strive to lower cost and stay competitive, more
responsive approaches that can reduce this over-provisioning
become increasingly appealing.

While successfully addressing these issues will ultimately
require rethinking how control is done across the protocol
stack, this paper focusses on the challenge of controlling,
avoiding and managing congestion in the network layer. As
such, we assume that a Traffic Engineering (TE) problem
has already been solved based on nominal estimates of traffic

N. Wu, Y. Bi, and A. Tang ({nw276,yb236}@cornell.edu,
atang@ece.cornell.edu) are with the department of Electrical
and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
N. Michael (nm373@cornell.edu) is with Waltz Networks, San
Francisco, CA 94134, USA. J. C. Doyle (doyle@caltech.edu)
is with the department of Computing and Mathematical Sciences, Cal-
ifornia Institute of Technology, Pasadena, CA 91125, USA. N. Matni
(nmatni@berkeley.edu) is with the department of Electrical Engi-
neering and Computer Science at UC Berkeley, CA, 94720.

This research was in part supported by the NSF and AFOSR, and by gifts
from Google and Huawei.

demands, leading to a fixed routing topology. When traffic
demands are inelastic, fluctuations in demand around the
nominal values used to solve the TE problem lead to in-
network congestion. For elastic demands, existing solutions
use combinations of congestion control and congestion avoid-
ance protocols wherein end-hosts use feedback from the
network – provided in the form of packet drops (e.g., [3],
[4]), ECNs (e.g., [5], [6], [7]), RTTs (e.g., [8]), and queueing
delay estimates (e.g., [9]) – to adjust their transmission rates
so as to respect the capacity constraints of the network. All
of these algorithms are reactive, adjusting their transmission
rate based on some form of congestion signal from within the
network. Therefore, in both the inelastic and elastic setting,
in-network congestion is unavoidable.

With the introduction of SDN, solutions [1], [2], [10] have
emerged that successfully increase utilization while avoiding
congestion by carefully combining rapid and clever TE updates
with end-host pacing. The results are impressive, but at this
time, their applicability is limited to tightly controlled envi-
ronments, such as DCNs or enterprise inter-datacenter WANs.
Outside of these settings in-network congestion is simply un-
avoidable when aiming to increase network utilization. Despite
the wide body of literature aimed at controlling and avoiding
congestion, little attention has been paid to how to mitigate
the effects of congestion that has already entered the network
on performance. The challenge is that congestion management
naturally benefits from network-scale coordination, but traffic
demand fluctuations are a fast timescale phenomena.

It is therefore worth asking: can network-scale coordi-
nation and control be effectively applied to manage RTT
timescale traffic demand fluctuations? This paper provides
an affirmative answer. By allowing routers to exchange flow
rate and buffer occupancy information in real-time, so that
they can dynamically coordinate their link-service rates to
suitably “spread” congestion throughout the network, we show
that the resulting control policies explicitly use buffers as
resources to manage and mitigate the effects of in-network
congestion. Our approach is partially inspired by the success
of static in-network pacing, which has been shown to provide
benefits in the “tiny-buffer” setting [11], and of feedback rule
based end-host pacing in the DCNs [12] and optical packet
switched networks [13], [14]. Our work expands upon these
ideas by allowing switches to simultaneously react quickly to
local congestion events and to coordinate with each other to
optimize system wide utilization and packet loss rates.

This combination of dynamic control and network-scale
coordination results in a family of algorithms that we call
High Frequency Traffic Control (HFTraC), and is what al-
lows HFTraC to achieve higher network utilization and lower

2

packet loss rates than existing static, end-host only or link-
by-link rate-limiting policies. Further, that HFTraC works
by only rate-limiting the routers’ interfaces and does not
change queuing management or routing strategies makes it
compatible with and complementary to standard congestion
control, AQM and TE approaches. We also demonstrate that
at the rapid timescales that we consider, the responsiveness of
the link-rate controllers plays an important role in performance
– to that end, we provide a systematic study of HFTraC
implementation architectures, varying from completely cen-
tralized to completely decentralized. We show that the degree
of decentralization of an architecture loosely determines its
latency, describe the associated latency/performance tradeoff
and use it to quantitatively compare different architectures,
thus providing a fresh perspective on the often philosophical
debate pertaining to network architectures.

Related Work:. As far as we are aware, we present the first
use of distributed optimal control in the field of networking,
and provides the first example of network-scale control being
used to manage the inherently fast timescale phenomena of
congestion. Below we summarize other related work.

Optimal Control: We draw upon classical results in optimal
control [15] – these in particular are applicable to synthe-
sizing GOD and centralized control laws. When designing
coordinated architectures, we build on recent results from the
distributed optimal control literature, see [16], [17], [18], [19],
[20], [21], [22], [23], [24] and references therein. The use
of optimal control in networking is limited, with a notable
exception being [25], where the authors use Model Predictive
Control to maximize user Quality of Experience in the con-
text of video streaming. They similarly show that a control-
theoretic approach expands the design space of dynamic
adaptive video streaming algorithms, leading to significant
improvements over the state of the art.

Traffic Engineering: Traffic engineering is of great impor-
tance for network management and optimization and has at-
tracted much attention over the years, see [26], [27], [28], [29],
[30], [31], [32], [33], [34] for a non-exhaustive example list.
In particular, the community has recognized the importance of
implementing responsive (dynamic) traffic engineering [35],
[36], [37], [38], [39], [40], [41]. HFTraC works with fixed
routing topologies, and aims to mitigate the effects of con-
gestion caused by fast timescale traffic fluctuations around the
average demand values typically used in TE algorithms.

TCP/AQM: Congestion control and avoidance algorithms
built around TCP, AQM and ECN have a rich history in the
networking community. The corresponding control analysis,
see [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56], [5] for an incomplete list, use
models that also explicitly include physical propagation delay.
As demonstrated in §V-D, HFTraC should be viewed as a con-
gestion management algorithm that is and complementary to
the congestion control and avoidance provided by TCP/AQM.

Backpressure Techniques: The backpressure algorithm (BP)
and its many variants [57], [58], [59], [60], [61], [62] have
similar goals to those of HFTraC, in that both BP and
HFTraC attempt to distribute packets that have already entered
the network so as to minimize some measure of overall
congestion. Both algorithms attempt to meet their goals by

controlling queue service rates – however, whereas BP se-
lects each packet’s next hop based on one hop queue size
information, HFTraC assumes a fixed routing strategy but
allows for network-wide coordination. This is an important
difference, because in contrast to HFTraC, BP algorithms are
not compatible with existing TE solutions – further because BP
may lead to variable end-to-end delays for packets within the
same flow, out-of-order packet arrivals can be an issue when
used in conjunction with TCP/AQM schemes. Finally, HFTraC
algorithms allow for a principled exploration of tradeoffs
between average queue-length and packet drop %.

SDN: We are partially inspired by the recent work in
SDN based traffic management. Specific examples include [1],
which achieves high utilization by rate limiting smoothing;
[63], in which a hierarchical bandwidth allocation infrastruc-
ture is proposed; and [2], which addresses issues related to
transient congestion. We are also motivated by the richness of
the newly expanded network architecture design space enabled
by the introduction of SDN, which range from completely
centralized [10], to completely decentralized [64].

Key Findings:. We show in §V that:
1) HFTraC can simultaneously achieve an up to 80% de-

crease in packet loss rate relative to FIFO and up to
50% decrease in average queue length relative to static
smoothing (Fig. 6a).

2) HFTraC improves packet loss % and network utilization
when used with TCP/AQM (Figs. 13-16).

3) The coordinated implementation of HFTraC leads to up
to a 30% decrease in packet loss rate as compared to the
centralized implementation (Figs. 6a-7).

We further make the following contributions:1 (i) we show
that the dynamic service rate control task can be cast as a
distributed optimal control problem (§III); (ii) we implement
practical HFTraC controllers in the context of WANs using
OpenFlow enabled switches (§IV); and (iii) we provide a
systematic evaluation of HFTraC via a hardware testbed,
Mininet emulation, and a production WAN.

II. USING BUFFERS AS RESOURCES

Through the use of a series of toy examples built around
the systems shown in Figs. 1a & 1b, we demonstrate how
dynamic pacing policies based on buffer occupancy and link-
rate information can increase network utilization and robust-
ness to traffic demand variability.2 We start with familiar static
pacing policies, and gradually increase the level of dynamic
coordination between switches. We note that in the interest of
clarity, we restrict ourselves to end-host only pacing, but that
the results of §V all employ dynamic end-host and in-network
pacing.

Static end-host pacing: A common approach to traffic
pacing at end-hosts is to set a static rate limit – as such
we use the performance achieved by such static approaches
as a baseline upon which we seek to improve. The system
shown in Fig. 1a has link capacities of C1 = 23 Mbps, C2 =

1An earlier extended abstract [65] suggested HFTraC as an in-network con-
gestion management scheme, but provided only proof-of-concept experimental
support of its benefits.

2See §III and §V for a discussion of the i.i.d. normally distributed traffic
variations used in these examples.

3

L1 L2

S1 S2

(a)

L3

 S3 L2

 S2

L1

 S1

(b)

Fig. 1. (a) Two tandem switches. (b)Two SD pairs share a common link.

18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

Service rate on L1

P
a

c
k
e

t
lo

s
s
 (

\%
)

Link L1

Link L2

Sum L1+L2

(a)

18 19 20 21 22 23
0

10

20

30

40

50

Service rate on L1

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th
 (

K
b

it
s
)

Link L1

Link L2

Sum L1+L2

(b)

Fig. 2. Static end-host pacing reduces packet loss %.

18 Mbps, both buffer capacities are 200 Kbits, and traffic de-
mands arriving in S1 are i.i.d. normally distributed with mean
16 Mbps and standard deviation 2.5 Mbps. For this system,
we set a static rate limit on the upstream link: the upstream
buffer therefore absorbs and dampens the variations in link
rates seen downstream. We assume that S2 is implementing a
FIFO strategy, and is thus trying to process packets as quickly
as possible by setting the service rate for link L2 to be equal to
its capacity C2, while S1 will select a constant service rate for
L1 from within [C2, C1]. Fig. 2 shows that smoothing traffic
to 19 Mbps (lower than C1) leads to minimal packet loss at
the expense of slightly longer average queue lengths.

Buffer Length Coordination: We next explore the benefits
of dynamic smoothing policies that vary as a function of
downstream buffer occupancy. Such a coordinated approach
spreads congestion in space and time by making upstream
buffers slow their line-service rates when downstream buffers
are congested, and conversely, if downstream buffers are
(nearly) empty, then upstream buffers are more aggressive in
alleviating local congestion. Using the same example, we show
how a dynamic rate control policy implemented at S1 can lead
to superior performance. Figs. 3a-b show how such a buffer
occupancy based smoothing policy (computed as described in
§III) outperforms the optimal static policy described in the
previous example in terms of packet loss % at the expense of
slightly longer queue lengths – Figs. 3c-d show similar results
for the maximum utilization at which total loss rate is 0.1%.
As we demonstrate empirically in §V and prove in §VI, our
approach allows for a systematic exploration of this tradeoff
between packet loss % and average queue length.

Buffer Length and Link Rate Coordination: In order to
illustrate that further benefits can be achieved by coordinating
based on both buffer length and link rates, consider the
system in Fig. 1b in which two source-destination (SD) pairs
must share link L3. The links all have capacity 36 Mbps,
all buffer capacities are 800 Kbits, and the traffic demands
arriving at both S1 and S2 are i.i.d. normally distributed with
mean 17.5 Mbps and standard deviation 4 Mbps. In this case
the resulting control policies at switches S1 and S2 (again

18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

Capacity of link L1 (Mbps)

P
a

c
k
e

t
lo

s
s
 (

%
)

FIFO control

Dynamic control

(a)

18 20 22 24
30

35

40

45

Capacity of link L1 (Mbps)

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th
 (

K
b

it
s
)

FIFO control

Dynamic control

(b)

18 20 22 24
80

82

84

86

88

Capacity of link L1 (Mbps)

U
ti
liz

a
ti
o

n
 (

%
)

FIFO control

Dynamic control

(c)

18 20 22 24
5

10

15

20

25

30

35

Capacity of link L1 (Mbps)

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th
 (

K
b

it
s
)

FIFO control

Dynamic control

(d)

Fig. 3. Dynamic buffer-based pacing outperforms FIFO in terms of packet
loss and utilization.

18 19 20 21 22 23 24

Capacity of link L1 and L2 (Mbps)

0.5

1

1.5

2

2.5

P
a

c
k

e
t

lo
s

s
 (

%
)

FIFO control

Dynamic control

(a)

18 19 20 21 22 23 24

Capacity of link L1 and L2 (Mbps)

0.3

0.4

0.5

0.6

0.7

0.8

A
v

e
ra

g
e

 q
u

e
u

e
 s

iz
e

FIFO control

Dynamic control

(b)

18 19 20 21 22 23 24

Capacity of link L1 and L2 (Mbps)

34

34.2

34.4

34.6

34.8

35

35.2

35.4

A
v

e
ra

g
e

 t
h

ro
u

g
h

p
u

t

FIFO control

Dynamic control

(c)

Fig. 4. Dynamic buffer and rate-based control improve packet loss % and
average throughput.

obtained using the optimal control based methods described in
§III) depend on the buffer lengths at S1 and S2 and the link
service rates at L1 and L2. Fig. 4 shows that a dynamic control
policy dramatically outperforms a static FIFO policy in terms
of packet loss % and average throughput (as measured by the
average transmission rate on link L3) at the expense of slightly
larger average queue size. This is another simple illustration
of how our approach allows for the systematic exploration of
such tradeoffs.

III. OPTIMAL RATE CONTROLLERS

In the previous simple examples, the correct way for buffers
to coordinate is somewhat intuitive, but it can be difficult
to identify such opportunities in large-scale networks. We
propose using optimal control to synthesize dynamic pacing

4

policies, as these methods automatically recognize and exploit
such opportunities for coordination. We later show experimen-
tally that by suitably varying certain parameters at the design
stage, this approach allows network operators to explore a
larger design space of congestion management algorithms
and optimally tradeoff between packet % loss (or maximum
utilization) and average queue length.

There are four components that need to be specified to
formulate the optimal rate control problem: (i) a dynamic
model of traffic demands entering the network; (ii) a dynamic
model describing the evolution of these fluctuations through
the network; (iii) an objective function that can be used to
explore performance tradeoffs; and (iv) the information shar-
ing constraints, as defined by the implementation architecture,
imposed on the optimal pacing control feedback policy.

We adopt a fluid network model, and begin by introducing
a static model of the network operating under nominal con-
ditions, as is commonly used to solve TE problems. We then
introduce stochastic fluctuations in traffic demand, leading to
a dynamic model well suited to analyzing and controlling
undesirable transient behavior in network state. From this
model, we define the optimization objective as the weighted
sum of flow rate deviations (from the nominal rates specified
by the solution to a TE problem) and buffer occupancy, and
argue that it is a natural means of exploring tradeoffs between
packet loss % and average queue size.

Model and Notation: We consider a network consisting
of a set of switches V and a set of directed links L . We
let Lin

v and Lout
v denote the set of incoming and outgoing

links respectively for a switch v ∈ V . The network is shared
by a set I of source-destination (SD) pairs and the traffic
demand is denoted as di for SD pair i ∈ I . Let xil be the
arrival rate into the egress buffer associated with link l and
let f il be the transmission rate on link l due to SD pair i. The
total arrival rate and transmission rate on link l are defined
as xl =

∑
i∈I x

i
l and fl =

∑
i∈I f

i
l respectively. Here we

assume a switch-based routing scheme, in which each switch
v splits flows along outgoing links according to fixed split
ratios αil,v (as specified by the solution to a TE problem)
satisfying

∑
l∈Lout

v
αil,v = 1 for each SD pair i that utilizes

link l. Analogous formulations exist for path-based or label-
based forwarding.

From static to dynamic traffic demands: An idealized
static flow model, as is typically used when solving a TE
problem, assumes that the SD traffic demands are static. For
each SD pair i, we denote this nominal static traffic demand
by d∗i , and assume that a TE solution provides a corresponding
set of split ratios αil,v such that (i) the traffic demands d∗i are
met for each SD pair i, and (ii) the arrival rate x∗l := xl(t) =∑
i∈I(x

i
l)
∗ on each link l satisfies 0 ≤ x∗l ≤ Cl, where Cl

denotes the capacity of link l, and (xil)
∗ = αil,v

∑
k∈Lin

v
(f ik)∗.

Because the arrival rate does not exceed the link capacity at
any time, we have that f∗l = x∗l . Finally, we define

βil :=
(f il)

∗∑
k∈I(f

k
l)∗

(1)

to be the fraction of packets due to SD pair i on link l.
In contrast to this idealized model, it is known [66] that

Internet traffic demands vary across several timescales ranging

from months to years (capturing constantly growing long
term trends in demand) to seconds to milliseconds (capturing
random fluctuations in traffic demand). Our focus is on those
fluctuations that occur on timescales large enough to lead to
packet losses, but on timescales short enough that traditional
TE and/or congestion control algorithms cannot prevent con-
gestion from entering the network — in particular, we address
fluctuations that occur on the scale of 10 to 100 milliseconds.
For more about traffic characteristics, see [67], [68], [69], [70]
and the references therein.

We therefore relax the assumption of static traffic demands
d∗i and model the now time-varying demand di(t) of SD pair
i at time t as

di(t) = d∗i + ∆di(t), (2)

where each demand fluctuation ∆di(t) is an independent and
identically distributed (i.i.d.) Gaussian random variable with
zero mean and standard deviation σi.3

To capture the effect of these fluctuations in the network,
we now write the arrival rates xil(t) and transmission rates
f il (t) as a linear superposition of their nominal values (xil)

∗

and (f il)
∗ and perturbations ∆xil(t) and ∆f il (t) induced by

the fluctuations in traffic demand, i.e.,

xil(t) = (xil)
∗ + ∆xil(t),

f il (t) = (f il)
∗ + ∆f il (t)

(3)

We next derive a dynamic model that tracks the propagation
of these fluctuations through the network.

A dynamic view of the network: A consequence of this
dynamic model is that it is now possible for the arrival rate
xl(t) at time t into link l to exceed the transmission rate fl(t).
Assuming that each link l is equipped with an egress buffer
of capacity bmax

l , packet drops occur when the buffer length
reaches the buffer limit. It follows that the evolution of buffer
occupancy at time t at link l, denoted by bl(t), is given by4

ḃl(t) =

{
∆xl(t)−∆fl(t) if 0 ≤ bl(t) < bmax

l ,

min(∆xl(t)−∆fl(t), 0) if bl(t) = bmax
l .

(4)
The following properties then hold:

0 ≤ fl(t) =
∑
i∈I

f il (t) ≤ Cl, fl(t) ≤ xl(t) if bl(t) = 0,

∆xl(t) =
∑
i∈I

∆xil(t),

∆xil(t) =

{
∆di(t) if edge link,
αil,v

∑
k∈Lin

v
∆f ik(t− δk) otherwise.

for δk the propagation delay on link k ∈ Lin
v of switch v.

For the purposes of control, at each link l we introduce
a controllable buffer egress rate variable ∆ul, linearize the
above model around the nominal rates (xil)

∗, (f il)
∗ and empty

3Our choice of an i.i.d. Gaussian model for traffic demand fluctuations is
supported in the literature [66], and as we show in §V is further supported by
CAIDA traces [71]. Modeling traffic demand fluctuations is in itself a very
challenging problem, and we do not claim our model to be exact, but rather
a reasonable first order approximation. To that end, we discuss and evaluate
the robustness of HFTraC algorithms to errors in the statistical model of the
traffic demand fluctuation process in §V.

4Here we use that (xil)
∗ = (f il)∗ and hence xl − fl = ∆xl −∆fl.

5

buffer states b∗l = 0, and sample it at interval τ to obtain the
following discrete time model:

bl(n+ 1) = bl(n) + τ(∆xl(n)−∆ul(n)), (5)

∆fl(n+ 1) = ∆ul(n), ∆xl(n) =
∑
i∈I

∆xil(n), (6)

∆xil(n) =

{
∆di(n) if edge link,
αil,v

∑
k∈Lin

v
βik∆fk(n− nk) otherwise.

(7)

Here n is the discrete time index, satisfying τn = t and
τnk = δk for some integers nk. In Eq. (7) we make the sim-
plifying assumption that βil in Eq. (1) also specifies the ratio
of fluctuations due to each SD pair, i.e. ∆f il (n) = ∆fl(n)βil .

Objective Function: We propose computing dynamic pac-
ing policies that minimize the following objective function:

lim
n→∞

∑
l

[E[∆fl(n)]2 + λlE[bl(n)]2] (8)

which is the the weighted sum (specified by the weights
λl ≥ 0) of the steady state variance in traffic rate fluctuations
and buffer occupancy. Although the connection between this
objective function and packet loss rate, buffer occupancy
and utilization is not immediate, we show in §VI a natural
connection between this objective and standard buffer egress
policies. In particular, we show that taking the weights λl
to zero or infinity leads to, respectively, static smoothing or
FIFO policies. As we further demonstrate empirically in the
§V (see Fig. 6a), assuming sufficiently large buffers, static
smoothing policies minimize packet loss % at the expense
of longer average queue lengths; in contrast, FIFO policies
minimize average queue size at the expense of higher packet
loss %. Thus by sweeping the weighting parameters λl across
a range of values, network operators can trace out a tradeoff
curve in the now expanded packet loss % vs. average queue
size design space and select an appropriate pacing policy given
the constraints of their SLAs.

Information sharing constraints: When computing link-
rate control policies, it is important to explicitly model the
delays associated with the exchange and collection of network
state between routers. To take this latency into account during
the design process, for a controller located at link l we define
its available information set Il(n) at time n to be

Il(n) := {(bk(n− nlk))k∈L, (∆fk(n− nlk))k∈L}, (9)

where nlk is the communication delay associated with ex-
changing information from link k to link l. This extra level
of detail allows us to quantify the effects of architectural
decisions at the design stage – in particular, we focus on four
different implementation architectures:5

1. GOD: The Globally Optimal Delay free (GOD) architecture
assumes that a logically and physically centralized controller
can instantaneously access global network state information
as well as compute and execute control laws ∆ul for each
buffer, i.e., it assumes that the communication delays defining
the information constraints (9) satisfy nlk = 0 for all l, k ∈
L. This architecture is not implementable in practice, but the

5See Fig. 5 for a specific instantiation of these architectures in our
experimental testbed.

performance that it achieves is the best possible by a feedback
policy [15], and hence represents a benchmark against which
all other architectures should be compared.
2. Centralized: A physically centralized controller makes con-
trol decisions. For simplicity, we assume that these decisions
are based on synchronized global information. The latency
of the control loop is determined by nmax = maxl∈L nlk,
the longest round-trip-time from any router to the centralized
controller: it takes 1

2nmax for the controller to collect the link-
rate and buffer state of the network and another 1

2nmax for all
routers to receive the control decisions.
3. Coordinated: The coordinated controller is logically and
physically distributed, with a local controller located at each
router. In this case, nlk is specified by the delay of collecting
network state from the router associated with link k by the
router associated with link l. Local actions are then taken
immediately by local controllers, which compute their line-
rate using both timely local and delayed shared information.
4. Myopic: This is a completely decentralized architecture, in
which local controllers compute their control laws ∆ul using
local information only, i.e., nll = 0, nlk =∞.

Putting it all together: Given the aforementioned dynamic
model of traffic fluctuations (2) and network dynamics (5) –
(7), the specified objective function (8) and the information
sharing constraints (9), we pose the optimal pacing control
problem as

min
∆ul(n)

limn→∞
∑
l[E[∆fl(n)]2 + λlE[bl(n)]2]

s.t. network dynamics (5) – (7),
∆ul(n) = γl(Il(n)) for all l ∈ L,

(10)

which is a distributed optimal control problem. The final
constraint ensures that the service rates are constrained to be
a function γl of the available information Il(n), as specified
by the implementation architecture. We will discuss about
solving the problem with respect to the information exchange
constraints imposed by different architectures in §IV-A.

Why distributed optimal control? Posing the dynamic
pacing synthesis task as the distributed optimal control prob-
lem (10) has many advantages. It makes clear that there is a
broader design space than existing FIFO and pacing solutions,
and provides a systematic way of exploring it. Posing this
problem as a distributed control problem lets us quantify the
effects on performance of different implementation architec-
tures. Further, distributed optimal control naturally handles
both the stochastic nature of uncertain traffic demands, and
the information sharing delays inherent to spatially distributed
WANs. Finally, a key feature of this approach is that it is feed-
back based. The benefits of feedback in providing robustness
and performance guarantees in the face of environmental and
modeling uncertainty are well-studied and substantial [15]. As
we show in §V, in the context of the problem at hand, using
feedback provides us with robustness to errors in estimated
nominal traffic demands, traffic fluctuation models, and delay
jitter, as well as to the other simplifying assumptions that we
made in generating our model, as is made clear by the success
of our approach on a production WAN. Feedback therefore
allows us to use simplified models for analysis and design
and be confident that the resulting guarantees carry through to
real-world systems.

6

IV. DESIGN AND IMPLEMENTATION

A. Design
The distributed optimal control problem (10) can be solved

exactly when the information exchange constraints imposed on
the controller are given by the GOD, centralized or coordinated
implementation architectures using the methods described in
[15], [24]. For the myopic architecture, the resulting problem
is in fact NP-hard, and we therefore resort to nonlinear
optimization and brute-force search to obtain a reasonable
candidate controller to be used in comparison. We highlight
that in all cases, pacing control actions can be computed in the
controller by multiplying a precomputed gain matrix K (for
centralized and GOD architectures) or gain matrices Kl (for
coordinated and myopic architectures) with a finite history of
link-rate and buffer occupancy states. The details of pacing
control actions computation can be found in Appendix -B.

Input:
(xil)

∗, (f il)
∗: TE specified nominal flow rates;

λl: weight parameters defined in problem (10);
τ : time interval for measuring state variables;
Routing topology and resulting dynamics (5)-(7);
Initialization:
Compute gain matrices Kl by soving problem (10) using
methods from [15], [24];
n← 0;
Output: (∆ul(n)): rate control action for all links l ∈ L
while TE solutions remain valid do

foreach link l ∈ L do
Measure ∆fl(n) and bl(n);
Update Il(n) using collected information;
Compute ∆ul(n) using Kl and Il(n);
Send ∆fl(n), bl(n) and Il(n) to neighbors;
Transmit at rate f∗l + ∆ul(n);
Wait τ sec;

end
n← n+ 1;

end
Algorithm 1: Coordinated HFTraC pseudocode.

B. Implementation
Our practical implementation of HFTraC consists of four

components: (i) the measurement of link rates and buffer
lengths; (ii) applying control actions via rate limiting; (iii) the
exchange of state updates and control decisions, as specified
by the implementation architecture; and (iv) the computation
of control actions within the controller(s). We now present an
instantiation of the different HFTraC architectures on our three
node experimental testbed.

Experimental testbed implementation: Fig. 5 shows
the centralized, coordinated and myopic distributed network
architectures as implemented on our experimental testbed.
Each node runs Open vSwitch (OVS), with physical links
connecting the machines. We implement the different HFTraC
architectures as a modules in POX.

Communication: We enable communication between the
data and control planes by either sharing the same tunnels
with normal traffic, or by implementing dedicated control

tunnels. In the centralized architecture (cf. Fig. 5a), a single
controller runs on one of the machines and remotely connects
to the switches in the other machines. Although the GOD
architecture is not implementable in practice, it can be approx-
imated if the control tunnel propagation delays are negligible
compared to the delays of the data tunnels. In the coordinated
architecture (cf. Fig. 5b), each controller and its local switch
runs on the same machine, with additional communication
between controllers to exchange local state information. In the
myopic distributed architecture (cf. Fig. 5c), local controllers
compute control actions using only local state information
– hence no communication tunnels between controllers are
needed.

Measurement: HFTraC uses the following state variables:
the link rate deviation ∆fl and the egress queue length bl
on link l. Ingress/egress packet amounts and queue lengths
can be measured using Linux Traffic Control (TC) tools. By
querying the network statistics periodically via TC, controllers
gain access to timely measurements of their local link rates
and buffer lengths.

Rate Limiting: Rate limiting is needed in order to im-
plement the control actions specified by HFTraC. We use the
Token Bucket Filter (TBF) disciplines in TC to provide this
functionality: in the TBF queuing discipline, each outgoing
traffic byte is serviced by a single token. The most important
parameter of the bucket is its size (the number of tokens that
it can store). In our implementation, each router, regardless of
the system architecture, must be able to perform rate-limiting
control in order to implement the HFTraC specified control
action. The frequency of rate control depends on the sampling
rate. In order to ensure the accuracy of the rate control
functionality, the bucket size should be set to be as small as
possible, close to Maximum Transmission Unit (MTU). This
is because on creation, the TBF initializes with a full bucket,
which allows this amount of traffic to burst from the TBF at
its first release. Therefore if the rate limit is changed rapidly,
the average rate may be skewed by this initial burst of traffic
– in practice the real outgoing rate may be slightly larger than
the desired rate, unless the bucket size is set small enough to
disallow such bursts. In our experiments, we set the bucket
size to be 1514 Bytes, equal to the MTU.

Computation: Local or global control actions (depending
on the implementation architecture) are computed within the
POX controller using local and/or shared measurements and
the pre-computed gain matrix K or matrices Kl.

Pseudocode implementation: Algorithm 1 provides a pseu-
docode implementation of the coordinated HFTraC algorithm
operating under a fixed routing topology.6 In words, the
algorithm states that every time an update is made to the
routing topology, a new HFTraC controller with gain matrices
Kl needs to be computed. Once these gains are computed, the
algorithm implements the HFTraC controller by having each
switch: (i) measure and share its own flow and buffer state, (ii)
collect transmitted flow and buffer states from other switches,
and (iii) use this collected information and the precomputed
gain matrices to compute its egress rate. Of note is that there

6The pseudocode for the other implementation architectures is similar to
that shown, differing only in how information is exchanged between routers
and controller(s), and hence are omitted due to space constraints.

7

OVS

OVS

OVS

controller

Machine 2

Machine 1 Machine 3

1

(a) Centralized/GOD

OVS

OVS

OVS

controller

controller

controller

Machine 2

Machine 1 Machine 3

1

(b) Coordinated

OVS

OVS

OVS

controller

controller

controller

Machine 2

Machine 1 Machine 3

1

(c) Myopic distributed

Fig. 5. Architectures implemented on experimental testbed. Lines connecting OVSs are tunnels for normal traffic, connecting OVSs and controllers are
communication tunnels between data and control planes, and connecting controllers are tunnels for control message exchange.

is no notion of algorithmic convergence or termination here:
we are implementing a feedback controller that is reacting in
real-time to flow-rate deviations ∆di(n) at the ingress points
of the network. We do note however, that the controller that
we compute is guaranteed to be stabilizing, which means that
if for all times n ≥ n0 for any n0 ≥ 0, all flow rate deviations
∆di(n) = 0, then all of ∆fk(n), ∆uk(n) and b`(n) tend to 0
asymptotically. We further remark that although the theoretical
framework assumes synchronous updates of the link egress
rates u`, by employing a feedback based policy, we are robust
to deviations from such simplifying assumptions – we provide
experimental validation of this robustness in Section V.

V. EVALUATION

Using our experimental testbed, Mininet emulations, and a
production WAN we evaluate the ability of HFTraC to improve
network utilization in spite of rapidly varying traffic demands.
We show that:
• The modeling choices made in §III are consistent with

experimentally observed behavior (§V-A).
• HFTraC simultaneously decreases packet loss rate by

80% relative to FIFO average queue length 50% relative
to static smoothing (Fig 6a).

• HFTraC achieves an up to 8% increase in link utilization
(Fig 11) and 50% decrease in packet loss rate (Fig 12) on
our WAN and Backbone Network emulation, respectively.

• HFTraC complements TCP and AQM schemes, yielding
up to 50% decreases in packet loss % when used in
conjunction with TCP Cubic, TCP Reno with PI or RED,
and TCP Vegas with CoDel or PIE (§V-D).

• The coordinated implementation of HFTraC decreases
packet loss rates by up to 30% as compared to the
centralized HFTraC implementation (Figs. 6a-7).

A. Validating our model

We begin by performing a series of tests using our experi-
mental testbed to validate the modeling decisions made in §III.
Namely, we provide empirical support for (i) the validity of
the objective function (8) and its ability to interpolate between
FIFO (low buffer occupancy) and smoothing (low packet
loss) congestion management policies, (ii) HFTraC’s ability
to increase maximum link utilization in the face of variable
demand, (iii) the Gaussian i.i.d. model used for traffic demand
fluctuations, and (iv) that the feedback based implementation

of HFTraC provides robustness to errors in nominal traffic
demand estimates and statistical models of the traffic demand
fluctuations.

Experimental setup: Our lab testbed, shown in Fig. 5,
consists of three switches and three hosts: we overlay it with
the routing topology shown in Fig. 7a. Links between switches
have a capacity of 30 Mbps and 0.2 Mbits egress buffers. Edge
links that are connected with hosts have a larger capacity
of 42 Mbps and 0.3 Mbits egress buffers. Unless otherwise
stated, all buffers use a Drop Tail scheme. We choose a
sampling time of τ = 10 ms for the control law update
frequency. Fig. 5 also shows the different implementation
architectures: most are self-explanatory, but we note that we
approximately implement the GOD architecture by adding
dedicated control tunnels between the centralized controller
and switches. The propagation delays are 0.2 ms, which are
negligible compared to workload traffic delays.

Workloads: Hosts send and receive UDP traffic via iPerf.
The traffic demand increments di(n), which we allow to vary
every 10 ms, are distributed i.i.d. N (d∗i , σ

2). TC rate limiting
is used in the hosts to realize the variation of source traffic in
real time. The average source traffic at Src1 is half of that at
Src2, and thus the flows from Src2 are split along two paths
(S2 → S3 and S2 → S1 → S3 with split ratio 3 : 1), given
by the routing solution provided by standard TE methods.

Expanding and exploring the design space: In §III,
we claimed that the objective function (8) allows the user
to explore tradeoffs that arise between packet loss % and
average queue length. Here we provide an experimentally
derived example of such a tradeoff curve by evaluating the
performance achieved by HFTraC algorithms designed for
various values of the weighting parameters λl. We begin with
the case where the host buffer limits are infinite, meaning that
packet loss can only occur at switch buffers. Fig. 6a shows
the empirically derived tradeoff curve between loss rate and
average queue length for each of the possible implementation
architectures. For these experiments, the traffic demands from
Src1 are distributed according to a N (19, 82) distribution, and
those from Src2 follow a N (38, 82) distribution.

The tradeoff curve demonstrates that there exists a “sweet-
spot” in the design space that optimally trades off between
packet loss % and average queue length: in particular, a well-
tuned coordinated implementation of HFTraC can simultane-
ously achieve an 80% decrease in packet loss rate relative to
FIFO and 50% decrease in average queue length relative to

8

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Average queue length (Mbits)

P
a

c
k
e

t
lo

s
s
 (

%
)

GOD

Centralized

Coordinated

Myopic

λ → ∞

λ = 0

(a)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

λ

P
a

c
k
e

t
lo

s
s
 (

%
)

Edge buffer limit = ∞

Edge buffer limit = 0

Edge buffer limit = 1Mbits

(b)

Fig. 6. (a) Tradeoff between loss rate and average queue length for different
architectures. (b) Loss rate for varying edge buffer limits under GOD control.

static smoothing. It also shows that the combination of re-
sponsiveness and coordination of the coordinated architecture
provides an advantage over the centralized and myopic im-
plementations, and nearly matches the idealized performance
of the GOD architecture. Finally, when the weights λl are all
set to 0, we recover a static pacing solution that minimizes
packet loss % at the expense of larger average queue lengths;
conversely, if the weighting parameters tend to infinity, we
recover a FIFO solution that minimizes average queue length
at the expense of larger packet loss %.

Edge buffer limits matter: The previous experiment was
somewhat idealized, in that we assumed infinite buffers at
the network edge. We investigate the impact of edge buffer
limits, and Fig. 6b shows how the loss rate changes as a
function of the weighting parameter λ for three different cases
of host buffer limit sizes using the GOD controller. The other
architectures will exhibit qualitatively similar trajectories. As
expected, the more buffer resources available, the more dra-
matic the performance improvements of HFTraC.

Network-scale coordination increases utilization: We
now show that an appropriately tuned HFTraC algorithm
can allow for higher link utilization than standard FIFO
approaches. For this experiment, we set traffic fluctuations to
have a standard deviation of σ = 8, and gradually increase
the nominal values d∗i to explore the behavior of HFTraC and
FIFO schemes as maximum link utilization increases. Fig.
7 shows that HFTraC algorithms are able to reduce packet
loss by suitably spreading congestion due to traffic demand
fluctuations across buffers – not surprisingly, this in general
leads to slightly larger average queue lengths compared to
FIFO policies. Thus we see that HFTraC, regardless of ar-
chitecture, effectively reduces the packet loss %, especially at
high maximum link utilizations. The combined responsiveness
and coordination of the coordinated HFTraC implementation
achieves very similar performance to that of the idealized GOD
architecture, both of which provide up to 50% improvements
in packet loss % relative to FIFO.

Traffic demand fluctuations can be modeled as i.i.d.
Gaussians: In the following set of experiments, we use
internet traces extracted from the CAIDA anonymized dataset
[71], which are recorded with nanosecond scale timestamps.
Fig. 8a shows the averaged link-rates measured across different
timescales. The histograms in Fig. 8b show that the link-
rate values are all well described by Gaussian curves of
the same mean and with variances that increase with the
sampling period. It can further be verified that data points

Src1 S1

S2

Src2

S3 Dst

30
m
s 10m

s

20ms

1

(a)

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

P
a

c
k
e

t
lo

s
s
 (

%
)

Maximum link utilization

FIFO

GOD

Centralized

Myopic

Coordinated

(b)

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th
 (

M
b

it
s
)

Maximum link utilization

FIFO

GOD

Centralized

Myopic

Coordinated

(c)

Fig. 7. (a): Experimental testbed setup. (b)/(c): Loss rate/average queue length
as utilization is increased.

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Th
ro
ug
hp
ut
	(
G
ig
ab
its
/s
ec
on
d)

Time	(seconds)

10ms
100ms
1000ms

(a)

0
50
0

10
00

15
00

20
00

25
00

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

Co
un
t

Throughput	 (Gigabits/s)

100ms

10ms

1000ms

100ms

10ms

1000ms

(b)

Fig. 8. (a)CAIDA trace sampled at three timescales: 10ms, 100ms, and
1000ms. (b) Histogram and Gaussian curve fitting of link rates at these
timescales.

are approximately uncorrelated in time, with empirical cross-
correlations between neighboring time-points being two orders
of magnitude smaller than the mean link-rate.7 The CAIDA
traces capture the behavior of aggregate flows, which is the
level of granularity at which TE solutions typically operate
(as in, e.g., [1], [2]) – therefore although individual TCP or
UDP flows may not exhibit the i.i.d. Gaussian behavior used
in our model, the CAIDA traces suggest it to be a reasonable
first order approximation for the behavior of aggregate flows.
We repeated the experiments of the previous section, shown in
Fig. 7a, with these CAIDA traces driving the traffic demand.
We appropriately scaled the rates to be meangingful for our
testbed, resulting in mean throughputs of 27.5 Mbps and
13.75 Mbps for Src1 and Src2, respectively. Fig. 9 shows
similar curves to the results from our previous experiment. We
show next that the feedback based implementation of HFTraC
provides robustness to, among other things, deviations from
this statistical model.

HFTraC is robust to modeling errors: Our model is built
under the assumption that nominal traffic demand rates are

7In particular, we compute the sample cross-correlation between neighbor-
ing data-points for sampling times of 10 ms and 100 ms, and find it to be
1.3% and .75% of the mean link rate, respectively.

9

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
a

c
k
e

t
lo

s
s
 (

%
)

Maximum link utilization

FIFO

GOD

Centralized

Myopic

Coordinated

(a) Loss rate

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

A
v
e

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th
 (

M
b

it
s
)

Maximum link utilization

FIFO

GOD

Centralized

Myopic

Coordinated

(b) Average queue length

Fig. 9. Loss rate and average queue length for data-driven experiment with
CAIDA traces.

−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

∆ (%)

P
a

c
k
e

t
L

o
s
s
 (

%
)

FIFO

GOD

(a)

Gaussian Triangular
0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 (

%
)

FIFO

GOD

(b)

Fig. 10. HFTraC is robust to modeling errors. (a) Packet loss % as a function
of nominal traffic demand estimation error. (b) Packet loss % improvements
for Gaussian and Triangular fluctuation distributions.

exactly known, and that traffic demand fluctuations follow
an i.i.d. zero mean Gaussian distribution. We claimed at the
end of §III that an advantage of the feedback based nature of
HFTraC is that it provides robustness to modeling errors: we
demonstrate this now using our experimental testbed.

For simplicity, we restrict ourselves to the GOD architec-
ture, but later validate the claim for all architectures in §V-B,
by showing that HFTraC provides substantial benefits when
implemented on a production WAN that is subject to delay
jitter, control packet losses and other non-ideal behavior. In
Fig. 10a, we show the robustness of HFTraC to deviations of
up to 20% from the nominal traffic demand used to compute
the buffer egress line-rates. This shows that even when the
actual rate is 20% larger than the estimated nominal value,
HFTraC still provides an advantage over a FIFO strategy, and
in particular, when the actual value is larger than estimated,
HFTraC mitigates the effects of the unexpectedly larger traffic
demands, resulting in a lower packet loss %. Similarly, in Fig.
10b, we illustrate the performance of HFTraC when the source
rate fluctuation is triangularly distributed – HFTraC once again
significantly outperforms the FIFO strategy. The source rate is
taken to be i.i.d. N (30, 62) and compared to rates that are i.i.d.
with a symmetric triangular distribution between [0, 60].

B. WAN Experiments

We evaluate the performance of HFTraC on a WAN testbed
with 4 sites spread across 3 continents, as shown in Fig. 11(a).
Delays are specified on each link in Fig. 11a. The experimental
setup is shown in Fig. 11b, where capacities (Mbps) are also
labeled on each link. All buffer limits are 0.8 Mbits. Each
site has one virtual machine with OVS running as the WAN-
facing switch. The link delays used during the design phase

80ms

95ms
S1

Hong Kong

S3
London

S4
New York

S2
Palo Alto

70ms

35ms

35ms

(a) Network topology

S4

S2

S3

S1

Src1

Src2

Dst

90

50

5050

50

50

50

1
0
0

1

(b) Experimental setup

sigma = 5 sigma = 10
0.5

0.6

0.7

0.8

0.9

1

M
a

x
im

u
m

 l
in

k
 u

ti
liz

a
ti
o

n

FIFO

Centralized

Coordinated

Myopic

(c) Maximum link utilization

Fig. 11. WAN testbed experiments. HFTraC leads to up to an 8% increase
in link utilization.

are estimated by running Ping between each pair of switches
and computing an average delay. The state information and
control decision messages are distributed to controllers using
the links shared with normal traffic – as such these control
packets are subject to delay jitter and the occasional drop.
The sampling/update period is 35 ms.

Our approach to handling dropped control packets is to
assume that the network is operating under nominal conditions
until updated information arrives. This means that when a
control packet is dropped, the corresponding buffer simply
transmits at its TE nominally specified rate f∗l . Similarly, if
the state information (∆fl(n) and bl(n) for link l) is lost
at time slot n, it is assumed that ∆ul(n) = ∆fl(n) = 0
and bl(n) = bl(n − 1). Notice that the effects of lost state
are only felt by the system until a fresh state is received by
the controller, after which it can reset itself immediately –
therefore the system is robust to control packet losses.

Because we are subject to physical propagation delays, we
cannot implement the GOD architecture – all other architec-
tures are implemented and compared to a FIFO strategy. We
use standard deviations in the traffic sources of σ = 5 and
σ = 10, and empirically determine the maximum achievable
link utilization achieved subject to loss rates of 0.1% and
0.5%, respectively.8 Fig. 11c shows that all implementations
of HFTraC improve the link utilization over FIFO, with more
substantial benefits coming in the face of more volatile traffic
– when σ = 10, the coordinated HFTraC implementation leads
to a nearly 8% increase in utilization as compared to a FIFO
strategy. We emphasize that we do not enforce synchronization
in traffic rate updates across buffers, relying instead on the
inherent robustness of our feedback based implementation.

C. Backbone Network Emulation
We use Mininet to emulate the Abilene network, shown in

Fig. 12a, which has 11 nodes and 28 100 Mbps links with

8The higher allowable loss rate for σ = 10 is why higher link utilization
is achieved.

10

(a) Network topology

sigma = 5 sigma = 10
0.2

0.4

0.6

0.8

1

1.2

1.4

P
a

c
k
e

t
lo

s
s
 (

%
)

FIFO

GOD

Centralized

Myopic

Coordinated

(b) Loss rate

Fig. 12. Abilene network emulation.

5 10 15 20 25 30
5

10

15

20

25

A
v
e

ra
g

e
 T

C
P

 B
a

n
d

w
id

th
 (

M
b

p
s
)

Average background traffic (Mbps)

HFTraC + Cubic

Cubic

(a) TCP average bandwidth

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

T
o

ta
l
P

a
c
k
e

t
lo

s
s
 (

%
)

Average background traffic (Mbps)

HFTraC + Cubic

Cubic

(b) Total loss rate

Fig. 13. TCP average bandwidth and total loss rate with/without coordinated
HFTraC.

propagation delays in ms specified by their labels. We use
UDP traffic to replay the demands extracted from the data
sampled in prior studies [66]. The maximum link utilization
is set to 85% and we evaluate the packet loss rate for
traffic demand fluctuations with standard deviations of σ = 5
and σ = 10. Fig. 12b shows that all implementations of
HFTraC allow for a significant decrease in packet loss %
relative to FIFO control, and that the coordinated HFTraC
implementation in particular decreases packet loss rate by over
50%.

D. HFTraC and Congestion Control
Here we show that HFTraC is complementary to established

TCP/AQM congestion control strategies that operate at similar
timescales, leading to improvements in average throughput,
maximum utilization and packet loss %.

HFTraC improves TCP throughput: We evaluate the per-
formance of the coordinated HFTraC implementation working
in conjunction with TCP congestion control using the lab
testbed in Fig. 7a. We use iPerf to send TCP traffic from
Src1 to Dst, with Cubic [72] enabled in Src1. Different
levels of background UDP traffic from Src2 to Dst are
introduced using appropriately scaled CAIDA traces as driving
inputs. Fig. 13 clearly shows that the coordinated HFTraC
implementation reduces the total loss rate significantly (by
over 50% when the average background traffic is between
15 Mbps and 20 Mbps), and thus the average throughput of
the TCP flow is also increased. The high loss rate at low-levels
of background traffic is to be expected: most losses occur at
S1 when the TCP rate is increased beyond the capacity of link
S1→ S3.

HFTraC improves TCP streaming performance: We
use the lab testbed shown in Fig. 7a to study the effects
of HFTraC on per-packet delay in the context of a video

32 34 36 38 40

Average background traffic (Mbps)

30

40

50

60

70

80

90

A
v
e

ra
g

e
 P

e
r

P
a

c
k
e

t
R

T
T

(m
s
) HFTraC + Cubic

Cubic

(a) TCP per-packet RTT

32 34 36 38 40

Average background traffic (Mbps)

0

2

4

6

8

10

12

T
C

P
 R

e
tr

a
n

s
m

is
s
io

n
 R

a
te

(%
) HFTraC + Cubic

Cubic

(b) TCP retransmission rate

Fig. 14. TCP per-packet RTT and retransmission rate with/without coordi-
nated HFTraC.

streaming application. The per-packet delay, as measured by
its RTT, is a key factor in the user-perceived performance of
streaming and web applications. We measure per-packet RTT
as the time between a packet is sent and its corresponding
ACK is received. In the case of packet retransmission, it is
measured from the first time the server sent the packet to the
receipt of its ACK. We set up a VLC server at Src1 with Cubic
enabled, and a client at Dst to retrieve the video stream: the
video we use has frame size 720× 406. With no background
traffic in the network, the average throughput of the video flow
is 3.16 Mbps. We inject different levels of background UDP
traffic from Src2 to Dst using appropriately scaled CAIDA
traces as driving inputs. For each background traffic level, we
measured the average per-packet RTT and TCP retransmission
rate over 10 minutes by analyzing each TCP packet header.
Fig. 14 demonstrates that HFTraC largely reduces the average
per-packet RTT and TCP retransmission rate with different
levels of background traffic, which is consistent with the video
streaming quality we observed during the experiments.

HFTraC improves TCP/AQM link utilization: For the
following series of experiments, we use a discrete-event
network simulation of the experimental three-node topology
to evaluate HFTraC working in conjunction with TCP and
AQM. In particular, we implement RED [4] or PI [73] AQM
strategies in the routers. We send 20 sessions of TCP flows
from both Src1 and Src2 to Dst. The packet size is 1 kBytes.
ECN is enabled and hosts implement TCP Reno. We evaluate
the average queue length-utilization tradeoff for RED and
PI working with and without HFTraC by sending only TCP
traffic, and varying the minimum queue threshold of RED and
queue reference of PI. In the second simulation scenario, we
introduce varying background UDP traffic from Src2 to Dst
and fix the minimum threshold to 15 packets in RED and
queue reference to 10 packets in PI. Fig. 15 shows that in both
cases RED/PI + HFTraC achieves up to 5% more utilization
than RED/PI alone under the same levels of buffer occupancy,
and subject to the same background traffic.

Using the Backbone Network emulator, we show the com-
patibility of HFTraC with TCP Vegas and PIE or CoDel. There
are four TCP senders and one receiver, as is illustrated in Fig.
12a, with all traffic routed along the smallest RTT path. We en-
able PIE and CoDel in the Linux Kernel (4.2.0-42-generic) via
the TC interface with the following settings: tupdate = 30 ms
for PIE, interval = 100 ms for CoDel, and limit = 200
packets for both. We run the tests for 100s in two congested
schemes: light and heavy traffic loads, corresponding to 5 and

11

0 0.05 0.1 0.15
72

74

76

78

80

82

84

Average Queue Length (Mbits)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

RED+HFTraC

RED

PI+HFTraC

PI

(a)

0 2 4 6 8
0.7

0.75

0.8

0.85

Average Background Traffic (Mbps)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

RED+HFTraC

RED

PI+HFTraC

PI

(b)

Fig. 15. Maximum link utilization of RED and PI working with/without
HFTraC. (a) Varying targeted queue length. (b) Varying background UDP
traffic.

0 5 10 15 20 25 30
0.95

0.96

0.97

0.98

0.99

1

Average Queue Length (ms)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

PIE (heavy)

PIE (light)

PIE+HFTraC (heavy)

PIE+HFTraC (light)

(a) PIE

0 5 10 15 20 25 30
0.94

0.95

0.96

0.97

0.98

0.99

1

Average Queue Length (ms)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

CoDel (heavy)

CoDel (light)

CoDel+HFTraC (heavy)

CoDel+HFTraC (light)

(b) CoDel

0 10 20 30 40 50 60
0.95

0.96

0.97

0.98

0.99

1

Average Background Traffic (Mbps)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

PIE (heavy)

PIE (light)

PIE+HFTraC (heavy)

PIE+HFTraC (light)

(c) PIE

0 10 20 30 40 50 60
0.95

0.96

0.97

0.98

0.99

1

Average Background Traffic (Mbps)

M
a

x
im

u
m

 L
in

k
 U

ti
liz

a
ti
o

n

CoDel (heavy)

CoDel (light)

CoDel+HFTraC (heavy)

CoDel+HFTraC (light)

(d) CoDel

Fig. 16. Max utilization achieved by TCP Vegas with PIE/CoDel with/without
HFTraC as a function of average buffer occupancy and background UPD
traffic.

30 TCP Vegas flows per sender, respectively. We first use only
TCP flows and vary the target delay for PIE and CoDel. Figs.
16a and 16b show the throughput of the bottleneck link (edge
link for Dst) with respect to the average queue length of all
routers along the path from Src1 to Dst as the target delay
varies from 5 ms to 30 ms. We then fix the target delay at
20 ms and add 5 UDP flows from Src3 to Dst. We show the
bottleneck link throughput under various background traffic
loads in Figs 16 (c) and (d). In all cases, HFTraC is compatible
with PIE and CoDel, leading to increased link utilization.

VI. DISCUSSION

Comparing architectures: Notice that any centralized al-
gorithm can be implemented on a coordinated architecture, and
that likewise, any coordinated algorithm can be implemented
on the GOD architecture. Similarly any myopic algorithm can
be implemented on a coordinated architecture. This simple
observation lets us order the performance achieved by the best
control policy on each of these architectures. Let νGOD, νcen,
νcoord and νmyop denote the optimal cost achieved in optimal
control problem (10) by a control policy implemented using
the GOD, centralized, coordinated and myopic architectures,

respectively. We then have that νGOD ≤ νcoord ≤ νcen and
νGOD ≤ νcoord ≤ νmyop. This qualitative ranking of architec-
tures does not quantify their performance gap – there may be
situations where a centralized architecture is preferable (per-
haps because logically centralized algorithms can be simpler
to implement, debug and maintain). By computing the optimal
cost achieved by a centralized controller and comparing to
that achieved by a coordinated controller, we can quantify
the tradeoff between centralization and performance. For the
example in Fig. 7, the computed norms were νGOD = 585.49 ≤
νcoord = 634.5 ≤ νmyopic = 791.48 ≤ νcen = 1009.269, which
is consistent with the results of that experiment.

Recovering FIFO and smoothing algorithms: When the
λl tend to infinity, the cost function only penalizes buffer size
variance without any consideration for link rate deviations.
Now given that at a specific buffer, bl(n + 1) = bl(n) +
τ(∆xl(n)−∆ul(n)) (Eq. (5)) it is clear that the optimal policy
with respect to this cost function is simply to set ∆ul(n) =
∆xl(n) + 1

τ bl(n), that is to say, to empty out the buffer
immediately, thus recovering a FIFO approach. This policy is
optimal as the resulting cost of optimal control problem (10)
is 0. Conversely, when the λl are set to zero, the cost function
only penalizes link rate deviations without any consideration
for queue occupancy. Now given that ∆f il (n) = ∆ul(n−1)βil ,
we achieve a cost of 0 if we set ∆ul(n) = 0 for all time n.
Recall that setting ∆ul(n) = 0 means that the optimal policy
specified in this case is simply to set ul(n) = f∗l for all time
n, hence recovering a static smoothing policy – this is a good
model for the rate limiting used in [1]. Thus by varying λ
between 0 and ∞, one traces out a Pareto-optimal curve in
which buffer size is traded off against “flow smoothness,” as
we showed in §III & §V.

Incremental deployment:. This suggests an incremental
deployment strategy for HFTraC – simply set the appropriate
weights λl to either 0 or to be very large depending on whether
a non-HFTraC buffer is implementing a FIFO or smoothing
policy.

VII. CONCLUSION AND FUTURE WORK

This paper proposes HFTraC (High Frequency Traffic Con-
trol), which is a dynamic generalization of standard traffic
control techniques such as FIFO and static smoothing at the
network layer. It can also be used to explore architectural
tradeoffs between delay and utilization. Our results demon-
strate that HFTraC allows for higher bandwidth utilization
in the face of rapidly fluctuating traffic demand relative to
traditional static approaches. HFTraC should be viewed as
making explicit use of buffer space as a network resource
by dynamically coordinating link service rates so that the
demand fluctuation is best handled by the right buffers in the
network. Promising future directions include understanding
how to allocate such egress buffers throughout a network,
and integrating HFTraC with dynamic approaches to traffic
engineering.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in SIGCOMM, 2013.

[2] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[3] V. Jacobson, “Congestion avoidance and control,” SIGCOMM, 1998.

12

[4] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, 1993.

[5] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP,” RFC 2481, January, Tech. Rep., 1999.

[6] D. Lapsley and S. Low, “Random early marking for internet congestion
control,” in GLOBECOM, 1999.

[7] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” SIGCOMM, 2002.

[8] L. S. Brakmo and L. L. Peterson, “Tcp vegas: end to end congestion
avoidance on a global internet,” IEEE Journal on Selected Areas in
Communications, 1995.

[9] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast tcp: Motivation,
architecture, algorithms, performance,” IEEE/ACM Transactions on Net-
working, 2006.

[10] J. Perry et al., “Fastpass: A centralized zero-queue datacenter network,”
in SIGCOMM, 2015.

[11] N. Beheshti et al., “Experimental study of router buffer sizing,” in ACM
SIGCOMM conference on Internet measurement, 2008.

[12] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim, “Eyeq: Practical network performance isolation at the edge,”
in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). Lombard, IL: USENIX,
2013, pp. 297–311.

[13] V. Sivaraman et al., “Packet pacing in small buffer optical packet
switched networks,” IEEE/ACM Transactions on Networking, 2009.

[14] Y. Cai et al., “A practical on-line pacing scheme at edges of small buffer
networks,” in INFOCOM, 2010.

[15] K. Zhou, J. C. Doyle, K. Glover et al., Robust and optimal control.
Prentice hall New Jersey, 1996, vol. 40.

[16] M. Rotkowitz and S. Lall, “A characterization of convex problems in
decentralized control,” Automatic Control, IEEE Transactions on, 2006.

[17] M. Rotkowitz et al., “Convexity of optimal control over networks with
delays and arbitrary topology,” International Journal of Systems, Control
and Communications, 2010.

[18] L. Lessard and S. Lall, “A state-space solution to the two-player
decentralized optimal control problem,” in Communication, Control, and
Computing (Allerton), 2011.

[19] C. W. Scherer, “Structured H∞-optimal control for nested interconnec-
tions: A state-space solution,” System & Control Letters, 2013.

[20] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over posets:
A state space solution for state-feedback,” in Decision and Control,
2010.

[21] A. Lamperski and L. Lessard, “Optimal state-feedback control under
sparsity and delay constraints,” in IFAC Workshop on Distributed Esti-
mation and Control in Networked Systems, 2012.

[22] A. Lamperski and J. C. Doyle, “The H2 control problem for quadrati-
cally invariant systems with delays,” Automatic Control, IEEE Transac-
tions on, 2015.

[23] N. Matni, “Distributed control subject to delays satisfying an H∞ norm
bound,” in Decision and Control, Dec 2014.

[24] Y.-S. Wang et al., “Localized LQR optimal control,” in Decision and
Control, 2014.

[25] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-
proach for dynamic adaptive video streaming over http,” in SIGCOMM,
2015.

[26] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE transactions on communications, 1977.

[27] B. Fortz and M. Thorup, “Increasing internet capacity using local
search,” Computational Optimization and Applications, 2004.

[28] D. Xu et al., “Link-state routing with hop-by-hop forwarding can achieve
optimal traffic engineering,” IEEE/ACM Transactions on Networking,
2011.

[29] A. Sridharan et al., “Achieving near-optimal traffic engineering solutions
for current OSPF/IS-IS networks,” IEEE/ACM Transactions on Network-
ing, 2005.

[30] S. Srivastava et al., “Determining link weight system under various
objectives for OSPF networks using a lagrangian relaxation-based ap-
proach,” IEEE Transactions on Network and Service Management, 2005.

[31] D. O. Awduche, “MPLS and traffic engineering in IP networks,”
Communications Magazine, IEEE, 1999.

[32] A. Elwalid et al., “MATE: MPLS adaptive traffic engineering,” in
INFOCOM, 2001.

[33] D. Applegate and E. Cohen, “Making routing robust to changing
traffic demands: algorithms and evaluation,” IEEE/ACM Transactions
on Networking, 2006.

[34] M. Kodialam et al., “Oblivious routing of highly variable traffic in
service overlays and IP backbones,” IEEE/ACM Transactions on Net-
working, 2009.

[35] A. Shaikh et al., “Load-sensitive routing of long-lived IP flows,” in
SIGCOMM, 1999.

[36] T. Benson et al., “MicroTE: Fine grained traffic engineering for data
centers,” in CoNEXT, 2011.

[37] S. Kandula et al., “Walking the tightrope: Responsive yet stable traffic
engineering,” in SIGCOMM, 2005.

[38] N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state optimal
routing,” IEEE/ACM Transactions on Networking, 2015.

[39] H. Wang et al., “COPE: traffic engineering in dynamic networks,” in
SIGCOMM, 2006.

[40] I. Gojmerac et al., “Adaptive multipath routing for dynamic traffic
engineering,” in GLOBECOM, 2003.

[41] S. Fischer et al., “REPLEX: dynamic traffic engineering based on
wardrop routing policies,” in CoNEXT, 2006.

[42] T. Alpcan and T. BAŞAR, “Global stability analysis of an end-to-end
congestion control scheme for general topology networks with delay,”
Turkish Journal of Electrical Engineering & Computer Sciences, 2004.

[43] S. Deb and R. Srikant, “Global stability of congestion controllers for
the internet,” IEEE Transactions on Automatic Control, 2003.

[44] C. Hollot et al., “A control theoretic analysis of red,” in INFOCOM,
2001.

[45] C. Hollot and Y. Chait, “Nonlinear stability analysis for a class of
tcp/aqm networks,” in Decision and Control, 2001.

[46] R. Johari and D. K. H. Tan, “End-to-end congestion control for the
internet: Delays and stability,” IEEE/ACM Transactions on Networking,
2001.

[47] K. B. Kim et al., “A stabilizing aqm based on virtual queue dynamics
in supporting tcp with arbitrary delays,” in Decision and Control, 2003.

[48] S. Liu et al., “Pitfalls in the fluid modeling of rtt variations in window-
based congestion control,” in INFOCOM, 2005.

[49] S. H. Low et al., “Linear stability of tcp/red and a scalable control,”
Computer Networks, 2003.

[50] L. Massoulie, “Stability of distributed congestion control with heteroge-
neous feedback delays,” IEEE Transactions on Automatic Control, 2002.

[51] F. Paganini et al., “Congestion control for high performance, stability,
and fairness in general networks,” IEEE/ACM Transactions on Network-
ing, 2005.

[52] Z. Wang and F. Paganini, “Global stability with time-delay in network
congestion control,” in Decision and Control, 2002.

[53] G. Vinnicombe, “On the stability of networks operating tcp-like proto-
cols,” in IFAC, 2002.

[54] L. Ying et al., “Global stability of internet congestion controllers with
heterogeneous delays,” IEEE/ACM Transactions on Networking, 2006.

[55] D. Katabi et al., “Congestion control for high bandwidth-delay product
networks,” in SIGCOMM, 2002.

[56] N. Dukkipati, N. McKeown, and A. G. Fraser, “Rcp-ac: Congestion con-
trol to make flows complete quickly in any environment,” in INFOCOM,
2006.

[57] Tassiulas and Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop
radio networks,” IEEE transactions on automatic control, 1992.

[58] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
IEEE/ACM Transactions on Networking, 2007.

[59] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Decision and Control, 2004.

[60] E. Modiano et al., “Maximizing throughput in wireless networks via
gossiping,” in ACM SIGMETRICS, 2006.

[61] L. Georgiadis et al., “Resource allocation and cross-layer control in
wireless networks,” Foundations and Trends R© in Networking, 2006.

[62] L. Jiang and J. Walrand, “Scheduling and congestion control for wire-
less and processing networks,” Synthesis Lectures on Communication
Networks, 2010.

[63] A. Kumar et al., “BwE: Flexible, hierarchical bandwidth allocation for
WAN distributed computing,” in SIGCOMM, 2015.

[64] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in SIGCOMM, 2014.

[65] N. Wu, Y. Bi, N. Michael, A. Tang, J. Doyle, and N. Matni,
“Hftrac: High-frequency traffic control,” in Proceedings of the 2017
ACM SIGMETRICS / International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’17 Abstracts.
New York, NY, USA: ACM, 2017, pp. 43–44. [Online]. Available:
http://doi.acm.org/10.1145/3078505.3078557

[66] P. Tune and M. Roughan, “Internet traffic matrices: A primer,” Recent
Advances in Networking, 2003.

[67] R. Teixeira et al., “Traffic matrix reloaded: Impact of routing changes,”
in Passive and Active Network Measurement. Springer, 2005.

[68] Y. Zhang et al., “Fast accurate computation of large-scale ip traffic
matrices from link loads,” in SIGMETRICS, 2003.

13

[69] M. Roughan et al., “Experience in measuring backbone traffic variabil-
ity: Models, metrics, measurements and meaning,” in ACM SIGCOMM
Workshop on Internet measurement, 2002.

[70] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” in
SIGCOMM, 2015.

[71] “The CAIDA UCSD Anonymized Internet Traces - February 2012,”
http://www.caida.org/data/passive/passive 2012 dataset.xml, 2012.

[72] S. Ha et al., “Cubic: a new tcp-friendly high-speed tcp variant,” ACM
SIGOPS Operating Systems Review, 2008.

[73] C. V. Hollot, V. Misra et al., “On designing improved controllers for
aqm routers supporting tcp flows,” in INFOCOM, 2001.

APPENDIX

A. Tractability of distributed optimal control problems
Here we summarize relevant results from [17], which pro-

vides conditions on the propagation and communication delays
of a distributed system and controller, respectively, such that
the resulting distributed optimal control problem admits a
convex reformulation. We note that although [17] addresses
distributed optimal control in the model-matching framework,
there is a standard equivalency between the LQR problems
considered in this paper and the H2-optimal control problem
considered in the model-matching literature [15].

Consider a distributed system described by a collection
of subsystems, each equipped with its own controller. In
our setting, the subsystems are switches, each equipped with
their own egress rate controllers. We define pij to be the
propagation delay from subsystem j to subsystem i, i.e., the
amount of time it takes for a control action taken at subsystem
j to be detectable by the controller at subsystem i. In our
setting, as the subsystems are switches interconnected by links,
the pij are determined by link delays. For example, if switch j
feeds directly into switch i via a link ` with delay n`, then we
have that pij = n`. Further, if we assume a routing topology
that is a directed graph with no loops, then pji =∞, as switch
i is downstream of switch j.

Similarly, we define tkl to be the communication delay from
the controller at subsystem l to the controller at subsystem k,
i.e., tkl is the minimum amount of time before the controller at
subsystem k can use information collected by the controller at
subsystem l. We further make the assumption that these com-
munication delays satisfy the following triangle-inequality:

tki + tij ≥ tkj ∀i, j, k. (11)

This assumption is not restrictive at all, and is satisfied if
communication between controllers follows a shortest delay
path, as measured with respect to the communication topology
between controllers.

The main result from [17] then stays that if pij ≥ tij for
all i, j, then the resulting distributed optimal control problem
admits a convex formulation. We consider two settings for our
communication between controllers:
• In-band communication: we assume that controllers use

the same routing topology as that used for data-exchange,
but make the assumption that controller packets are given
priority. This then means that for all i, j we have that
tij = pij , and hence the resulting control problem is
tractable. In particular, this means that when the routing
topology is a directed graph with no self-loops, then the
coordinated architecture only requires that information
be shared downstream. We do note however that in this
setting, in order to apply the results of [17], we must
have that the routing topology specifying the pij is one

arising from a shortest-path algorithm. The more general
setting where this assumption does not hold can still be
addressed, but needs to be considered on a case-by-case
basis to ensure that information is exchanged between
controllers at least as quickly as data propagates through
the network.

• Out-of-band communication: the conditions stated
above tell us that we need to ensure that our communi-
cation topology allows controllers to communicate with
each other at least as quickly as data propagates through
the network, thus ensuring that pij ≥ tij for all i, j.

B. LQR Optimal Control

The discrete-time Linear Quadratic Regulator (LQR) prob-
lem [15] is described as follows. Given a discrete-time linear
system with dynamics of form

x(n+ 1) = Ax(n) +Bu(n) + w(n),

z(n) =

[
Cx(n)
Du(n)

]
,

(12)

where x(n), u(n), z(n), and w(n) are the state, control input,
controlled output and process noise, respectively, at the nth
sampling time.

The goal of the LQR optimal control problem is to deter-
mine a control policy u(n), 0 ≤ n ≤ N so as to minimize
the steady-state variance of the controlled output z, i.e., to
minimize the objective function

lim
n→∞

E‖z(n)‖22 = lim
n→∞

E
[
x>(n)Qx(n) + u>(n)Ru(n)

]
,

for Q := C>C and R := D>D. It is well known [15] that in
the centralized setting, assuming the system is stabilizable, that
the solution to this problem is a static feedback policy u(n) =
Kx(n), where K can be computed by solving a Discrete-
Algebraic Riccati Equation (DARE). In the distributed setting,
so long as the resulting system satisfies certain assumptions
(see Appendix -A), the resulting problem can be reformulated
as a convex problem that admits an efficient solution.

In order to implement the HFTraC algorithm, we need to
be able to compute the solution to optimal control problem
(10). We summarize here how the dynamic model described in
Section III can be used to cast this problem (10), subject to the
GOD constraints (i.e., no information sharing constraints on
the controller) as a classical LQR problem as described above.
We then show how a minor extension allows us to compute the
centralized controller, and then explain how results from the
distributed optimal control literature can be leveraged to solve
the LQR problem subject to information exchange constraints
imposed by the coordinated architecture.

We now show how to map network flow model described in
Section III to the linear-time invariant dynamics (12) needed
for the LQR problem. Let N be the number of links l ∈ L
in the system, and select the control update interval τ such
that δl = nl × τ for some integer nl for all links l ∈ L,
where δl is the propagation link associated with link l. Let
∆fl(n) denote the link rate change at timestamp n on link
l. We use ∆Fl(n) to denote the history of link rate changes
from n to n−nl in reverse chronological order, i.e. ∆Fl(n) =
(∆fl(n),∆fl(n−1), . . . ,∆fl(n−nl))>. We further let vectors

14

∆f(n) and b(n) denote the rate changes and buffer lengths
for all links :

∆f(n) = (∆F1(n), . . . ,∆Fl(n), . . .)>,

b(n) = (b1(n), . . . , bl(n), . . .)>,∀l ∈ L.

The lengths of the column vectors are Nf =
∑
l∈L (nl + 1)

and Nb = N respectively.
Therefore the state variable x(n) ∈ RNf+Nb consists of the

stacked vector of link rate changes and buffer lengths, i.e.

x(n) = (∆f(n),b(n))>.

Similarly the control variable u(n) is the stacked vector of
service rate changes for all links, i.e.,

∆u(n) = (∆u1(n), . . . ,∆ul(n), . . .)>,∀l ∈ L,

and the disturbance variable w(n) is the stacked vector of
ingress flow rate deviations, i.e.,

w(n) = (∆d1(n), . . . ,∆di(n), . . .)>,∀s ∈ I,

This allows us to the network dynamics in the form (12):[
∆f(n+ 1)
b(n+ 1)

]
= A

[
∆f(n)
b(n)

]
+B∆u(n) +H∆w(n), (13)

for appropriately specified matrices (A,B,H).
From equation (6) we have that ∆Fl(n + 1) ∈ Rnl+1 for

any link l only depends on the previous link rate ∆Fl(n) and
the control variable ∆ul(n). Hence we can write

∆Fl(n+ 1) = Al∆Fl(n) +Bl∆ul(n),

where the matrix Al ∈ R(nl+1)×(nl+1) and vector Bl ∈
R(nl+1) are given by

Al =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
0 0 . . . 1 0

 , Bl =


1
0
0
...
0

 .
So we can write the general expression for vector ∆f(n+1)

as
∆f(n+ 1) = Afx(n) +Bf∆u(n),

Af = [Af1, 0Nf ,Nb
].

The matrices Af1 ∈ RNf×Nf and Bf ∈ RNf×Nb are block
diagonal matrices with blocks Al and Bl respectively, and
0Nf ,Nb

is an Nf ×Nb zero matrix.
Similarly, from equation (5), we have that

b(n+ 1) = Abx(n) +Bb∆u(n) +Hbw(n),

Ab = [Ab1, INb
], Bb = −τINb

, Hb = τENb

where INb
is an Nf × Nf identity matrix, Ab1 depends on

the routing topology and split-ratio coefficients, and ENb
is

an Nb × Nb diagonal matrix with Eii = 1 if bi is an edge
buffer, and 0 otherwise.

It then follows that if we define

A :=

[
Af1 0
Ab1 I

]
, B :=

[
Bf
Bb

]
, H :=

[
0
Hb

]
,

then the LTI dynamics (12) are consistent with the dynamic
network model described in Section III.

The objective function in (10) can then be written as

minimize
∆u(n)

lim
n→∞

E [cost(∆f(n),b(n),∆u(n))]

where the cost is defined as a quadratic function of the form

cost(∆f(n),b(n),∆u(n)) =

∆f(n)>Sf∆f(n) + b(n)>Sbb(n) + ∆u(n)>R∆u(n),

where Sf , Sb and R are symmetric and positive-semidefinite
matrices, and we set R ≈ 0. The parameter λ introduced in
our original problem (10) is applied here in matrix Sb.

Thus we have shown how, in the absence of communication
constraints, one can pose the HFTraC optimal control problem
(10) as a centralized LQR optimal control problem. Therefore,
we can compute the controller for the GOD architecture via the
solution to a DARE, as described above. For the centralized
architecture, we leverage the famed separation principle of the
LQG optimal control problem that states that the solution to
the output-feedback (i.e., where only a subset of the state can
be measured) version of the described problem is given by
the LQR optimal controller acting on estimates produced by
a Kalman filter. In the case of the centralized architecture,
the Kalman filter takes a particularly simple form, as we have
access to the entire state, but with delay. In particular, the state-
estimate is given by x′(n) = E[x(n)|x(n−nk)] = Ankx(n−
nk)+

∑nk−1
i=0 AiB∆u(n− i−1), where nk is the largest RTT

from a router to the centralized controller.
To address computing the optimal controller subject to the

information exchange constraints imposed by the coordinated
architecture, we leverage the recently developed localized
optimal control framework [24] to solve control problem (10).9

This framework allows the control law ul(n) to be imple-
mented using finite impulse response(FIR) filter banks. In
particular, the localized solution to (10) outputs two collections
of matrices, {M(t)}Tt=1 and {R(t)}Tt=1, for T a user specified
horizon,10 such that the control action ul(n) of buffer bl at
time instant n can be computed according to the following set
of equations

δ(n) = x(n)− x̂(n)

∆ul(n) =
∑T−1
τ=0 Ml(τ + 1)δ(n− τ)

x̂l(n+ 1) =
∑T−2
t=0 Rl(τ + 2)δ(n− τ),

(14)

where x>(n) = [∆f>(n) b>(n)].
From equation(14) we see that to enforce information shar-

ing constraints consistent with the coordinated architecture, it
suffices to impose suitable sparsity constraints on the matrices
{M(t)}Tt=1 and {R(t)}Tt=1 defining the necessary filter banks.
We note that in this framework, such constraints are convex
and hence the solution can be efficiently computed. Finally,
we remark that although the controller is implemented via
FIR filter banks, it is still a solution to the infinite-horizon
optimal control problem. The FIR horizon T corresponds to
the controller memory, and is a parameter that the designer
can adjust.

9Alternative approaches exist to solving these control problems, but we
choose the localized approach due to its simple implementation via FIR filter
banks.

10See [24] for details on how to choose this value.

