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Abstract— This tutorial paper provides an overview of the
System Level Approach to control synthesis; a scalable frame-
work for large-scale distributed control. The system level ap-
proach is composed of three central components: System Level
Parameterizations (SLPs), System Level Constraints (SLCs)
and System Level Synthesis (SLP) problems. We describe how
the combination of these elements parameterize the largest
known class of constrained controllers that admit a convex
formulation.

I. ABOUT THIS TUTORIAL

In this tutorial paper we will present the system level ap-
proach (SLA) for synthesizing distributed controllers. There
is far more material than we can hope to cover in a 12-
page tutorial. The idea of this paper is that it should provide
a snapshot of what the SLS framework is, how it can
be implemented, and provide some very simple examples.
We have created a website www.cds.caltech.edu/
syslevelsyn which contains a largely extended version of
this paper and will also include code, case studies, and links
to recent papers. The outline of the paper is given below, any
subjects in italics only appear in the extended online version
of this paper.
• Section II: Introduction.
• Section III: Problem statement, Youla parameteriza-

tion, quadratic invariance (QI), motivating non-QI ex-
ample.

• Section IV: System level parameterization, state feed-
back, robustness, output feedback.

• Section V: Case studies, trade-offs, chain examples,
power networks, regularization for design.

• Section VI: Conclusion.

II. INTRODUCTION

The Youla parameterization is arguably one of the most
important results in control theory. In the seminal paper [1],
Youla showed that there exists an isomorphism between
between a stabilizing controller and the closed loop response
from sensors to actuators. From a practical perspective this
result showed that all possible closed-loop system responses
could be achieved by an affine expression of the Youla
parameter (often denoted Q), this in turn allowed for direct
optimization of the closed loop response. Together with state-
space methods, this contribution played a major role in
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shifting controller synthesis from an ad hoc, loop-at-a-time
tuning process to a principled one with well defined notions
of optimality. Indeed, this approach proved very powerful,
and paved the way for the foundational results of robust and
optimal control that would follow [2]. With the advent of
modern optimization-based control, the interpretation of Q
being a closed loop response was downplayed and attention
was turned to developing tractable optimization methods.

The System Level Approach (SLA) that we present in this
tutorial is inspired by the system level thinking pioneered
by Youla: rather than directly designing only the feedback
loop between sensors and actuators, we propose directly
designing the entire closed loop response of the system, as
captured by the maps from process and measurement distur-
bances to control actions and states. A distinction between
the SLA approach and Youla’s is that the SLA explicitly
models the internal delay structure of the feedback system,
whereas Youla (and contemporary state-space methods) hid
the internal structure of the controller, and focused instead
on its input-output behavior (Figure 1: Top). This focus on
controller input-output behavior was natural for the problems
of that era (often motivated by aerospace and process control
applications), where systems had a single logically central-
ized controller with global access to sensor measurements
and global control over actuators. However, in the network
setting, a single controller with instantaneous access to all
system measurements and the ability to broadcast control
actions without delay to the actuators is unrealistic. Hence,
the communication and information sharing structure must
be considered (Figure 1: Bottom.)
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Fig. 1: Top: A classical centralized controller mapping sensor measurements
to actuator commands. In this setting there are no communication con-
straints. Bottom: A distributed controller composed of two sub-controllers
that can share information with a delay of 1 time-step.
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Fig. 2: Scalability of the state of the art distributed approach [3], classical
centralized methods, and localized systems level approaches.

The resulting systems are composed of several sub-
controllers, each equipped with their own sensors and ac-
tuators – sub-controllers then exchange locally available
information via a communication network. It follows that
the information exchanged between sub-controllers is con-
strained by the delay, bandwidth and reliability properties
of this communication network, ultimately manifesting as
information asymmetry among sub-controllers of the system.
It is this information asymmetry, that makes distributed
optimal controller synthesis challenging [4]–[9]. In fact, even
for decentralized systems that have a very simple description,
the resulting optimal control solution is still unknown [10].

Over the last 20 years the task of porting centralized con-
trol synthesis techniques to the distributed case has proven to
be a formidable challenge. The most successful framework in
this direction is the quadratic invariance (QI) methodology
introduced by Rotkowitz and Lall [6]. The QI approach
exactly characterizes the information constraints that can
be imposed on the controller such that the resulting Youla
parameterization of the closed-loop maintains convexity. In
the extended version of this paper, we will describe quadratic
invariance and draw comparisons with it when illustrating the
SLA framework in Section V.

A fact that is not emphasized in the literature is that
distributed controllers are actually more complex to syn-
thesize and implement than their centralized counterparts.
In Figure 2 the cost of synthesizing both distributed and
centralized controllers is plotted as a function of the state
dimension. One may be tempted to concede that this is
simply an inherent limitation of the optimal control approach:
achieving optimal performance in a large-scale system re-
quires complex controllers, and the best that can be hoped for
are approximations and/or principled heuristics. Our recent
results prove otherwise, and in doing so, significantly gen-
eralize foundational concepts from classical and distributed
optimal control such as the Youla parameterization and
quadratic invariance.

With this tutorial paper we aim to present our framework
for scalable distributed control which we term the systems
level approach. We have tried to collect the salient points
from our recent papers [11]–[22] on this topic and assemble
them into one coherent paper and back this up with additional

material, code, and case studies on the website. Our hope
is that this will encourage others to find new and exciting
application areas and take up the challenge of posing and
answering new theoretical questions in this framework. We
now provide a brief summary of the key points of this
tutorial.

The SLA to controller synthesis is composed of three
elements: System Level Parameterizations (SLPs), System
Level Constraints (SLCs) and System Level Synthesis (SLS)
problems. We highlight below some of the novel theoretical
and computational tools applicable to the area of structured
and constrained optimal controller synthesis that the SLA
provides.

• Novel SLPs of all stabilizing controllers and the closed
loop responses that they achieve [Section IV.A];

• SLPs allow us to constrain the closed loop response
of the system to lie in arbitrary sets: we call such con-
straints on the system SLCs. If these SLCs admit a con-
vex representation, then the resulting set of constrained
system responses admits a convex representation as well
[Section IV.B];

• Such constrained system responses can be used to
directly implement a controller achieving them – in
particular, any SLC imposed on the system response
imposes a corresponding SLC on the internal structure
of the resulting controller [Section IV.A and IV.B];

• The set of constrained stabilizing controllers that can
be efficiently parameterized using SLPs and SLCs is
a strict superset of those that can be parameterized
using quadratic invariance – hence the SLA provides
a generalization of the QI framework, characterizing
the broadest known class of constrained controllers that
admit a convex parameterization [online];

• A catalog of SLCs that admit a convex representa-
tion will be given: highlights include general convex
constraints on the Youla parameter (QI subspace con-
straints being a special case thereof), multi-objective
performance constraints, spatiotemporal constraints on
the system response, and constraints on the architectural
complexity of the controller [23], [24] [Section IV.B and
online];

• SLPs and SLCs can be combined to formulate a SLS
problem, which defines the broadest known class of
constrained optimal control problems that can be solved
using convex programming [Section IV.C];

• The optimal control problems considered in the QI and
localized optimal control literature are all special cases
of SLS problems [online].

• Robust variants of SLPs allow for localized controller
synthesis and implementation even if a system is not
exactly localizable [Section IV.D];

• The SLA can naturally accommodate noisy communi-
cation between sub-controllers and other uncertainties
which are “internal” to the control system, which will be
increasingly important issues, especially in the context
of biological and low-power systems [online].



• The system level approach can be used to quantify
tradeoffs in large-scale systems, such as those that arise
between controller performance and (i) implementation
complexity, (ii) controller robustness to internal compu-
tation error, and (iii) architectural complexity [Section
V].

Preliminaries & Notation: Lower and upper case boldface
Latin letters such as x and G denote signals and transfer
matrices, respectively, and calligraphic letters such as S to
denote sets. We work with discrete linear time invariant
(LTI) systems, but unless stated otherwise, all results extend
naturally to the continuous time setting. We use standard
definitions of the Hardy spaces H2 and H∞, and denote their
restriction to the set of real-rational proper transfer matrices
by RH2 and RH∞. Let G[i] denote the ith spectral compo-
nent of a transfer function G, i.e., G(z) =

∑∞
i=0

1
ziG[i]

for |z| > 1. We use FT to denote the space of finite
impulse response (FIR) transfer matrices with horizon T ,
i.e., FT := {G ∈ RH∞ |G =

∑T
i=0

1
ziG[i]}.

III. PROBLEM STATEMENT

Throughout this paper we will be concerned with design-
ing distributed controllers for discrete-time LTI systems that
take the following form

x[t+ 1] = Ax[t] +B1w[t] +B2u[t] (1a)
z̄[t] = C1x[t] +D11w[t] +D12u[t] (1b)
y[t] = C2x[t] +D21w[t] +D22u[t] (1c)

where x, u, w, y, z̄ are the state vector, control action,
external disturbance, measurement, and regulated output,
respectively. It is implicitly assumed that the dimensions of
these signals are all of compatible dimensions. Equation (1)
can be written in partitioned form as

P =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =

[
P11 P12

P21 P22

]
where Pij = Ci(zI−A)−1Bj+Dij is a sub-transfer matrix.
We refer to P as the open loop plant model.

It is further assumed that the system is sparse, specifically
that it is composed of n coupled subsystems that interact
with each other according to a graph G = (V, E). The nodes
V = {1, . . . , n} represent the set of subsystems, and the
edges E ⊂ V × V imply an interaction between two such
subsystems. An edge (i, j) ∈ E means that the state xj of
subsystem j directly affects the states xi of subsystem i.

Throughout this work we will deal with a dynamic output
feedback control law of the form u = Ky, where K is
assumed to have the state space realization

ξ[t+ 1] = Akξ[t] +Bky[t], (2a)
u[t] = Ckξ[t] +Dky[t], (2b)

with internal state ξ. In the z-domain it follows that K =
Ck(zI − Ak)−1Bk + Dk. A schematic diagram of the
interconnection of the plant P and the controller K is shown
in Figure 3. The following assumptions are made throughout
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K

y u

wz̄

Fig. 3: Interconnection of the plant P and controller K.

the paper.
Assumption 1: The interconnection in Figure 3 is well-

posed – the matrix (I −D22Dk) is invertible.
Assumption 2: Both the plant and the controller real-

izations are stabilizable and detectable; i.e., (A,B2) and
(Ak, Bk) are stabilizable, and (A,C2) and (Ak, Ck) are
detectable.

We now have all the pieces to be able to state the canonical
distributed control problem [6], [25]–[27]. The goal is to
minimize a suitable chosen norm of the closed loop map
by selecting a controller K that has a predefined structure.
Formally this can be stated as

minimize
K

‖P11 + P12K(I −P22K)−1P21‖
subject to K internally stabilizes P

K ∈ C,
(3)

where C is a subspace that incorporates the information
constraint. This subspace can enforce, for instance, the
information sharing constraints imposed on the controller K
by the underlying communication network. For an example
of an information constraint, consider the controller structure
depicted in the bottom of Figure 1. The controller consist of
two sub-controllers that exchange information but incur a
delay in doing so. The first controller receives the first two
measurements directly and the third is received after a delay,
via the second controller. Similarly, the second controller gets
the third measurement directly, while the first two signals
after received through the controller after a one-step delay.
This mapping from sensor to actuation can be written as[

u1(z)
u2(z)

]
= (

1

z

[
∗ ∗ 0
0 0 ∗

]
⊕

1

z2

[
∗ ∗ ∗
∗ ∗ ∗

]
⊕ . . .)

 y1(z)
y2(z)
yx(z)


where a ∗ denotes a not specified, non-zero entry. Such a
mapping can be encoded in the subspace constraint C.

If the final constraint K ∈ C is removed the standard
centralized model matching problem is recovered. In this
case the control action is simply u = Ky. In the extended
version of this tutorial we include a detailed description of
the Youla parameterization that convexifies (3) and the notion
of quadratic invariance [6] which extends this approach to
the distributed setting.



Fig. 4: The closed-loop response mapping w to z̄. The SLP that maps the
part of the closed-loop response that we design is the map (δx, δy) →
(x,u).

IV. SYSTEM LEVEL APPROACH

In this section the three core components of the system
level approach are introduced: the system level parameter-
ization (SLP), system level constraints (SLCs), and system
level synthesis (SLP) problems.

A. System Level Parameterization

For an LTI system with dynamics given by (1), we define
the system response {R,M,N,L} to be the maps satisfying[

x
u

]
=

[
R N
M L

] [
δx
δy

]
, (4)

where δx = B1w is the disturbance on the state vector, and
δy = D21w is the disturbance on the measurement.

We say that a system response {R,M,N,L} is stable
and achievable with respect to a plant P if there exists an
internally stabilizing controller K such that the interconnec-
tion illustrated in Figure 3 leads to closed loop behavior
consistent with equation (4). Figure 4 illustrates the system
response described by equation (4) as a block diagram.
Unlike the Youla approach, keeping the state in the mapping
is absolutely central to the system level approach.

The following theorem is at the centre of the system level
approach, it characterizes in an algebraic manner, all the
achievable responses for a stabilizing controller.

Theorem 1: For the output feedback problem with D22 =
0 in (1) the system response {R,M,N,L} transfer matrices
from (4) are:

R = (zI −A−B2KC2)−1

M = KC2R

N = RB2K

L = K + KC2RB2K. (5)

and the following are true:
(a) The affine subspace described by:[

zI −A −B2

] [R N
M L

]
=
[
I 0

]
(6a)[

R N
M L

] [
zI −A
−C2

]
=

[
I
0

]
(6b)

R,M,N ∈ 1

z
RH∞, L ∈ RH∞ (6c)

parameterizes all system responses (5) achievable by an
internally stabilizing controller K.
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Fig. 5: Representation of the closed loop map in terms of the state space
matrices from (1) and the controller K. The blocks inside the dotted blue
give the state space equivalent of the system response {R,M,N,L}.

(b) For any transfer matrices {R,M,N,L} satisfying (6),
the controller K = L−MR−1N is internally stabilizing
and achieves the desired response (5).

As this characterizes all the achievable system responses we
refer to it as the system level parameterisation (SLP). In the
same way that the Youla parameterization characterizes all
maps from exogenous inputs to outputs, the SLP character-
izes all closed loop responses from (δx, δy) to (x,u). One
of the key differences is that the SLP keeps the state in the
parameterization. This is important because, intuitively, the
state matrix A contains the bulk of the system structure. In
Figure 5 the state space matrices are included in the closed-
loop block diagram.

It should be noted that the SLP (6a)-(6c) is an affine sub-
space, thus it is a tractable constraint that can be incorporated
into a convex optimization. This idea is central to the system
level constraints (SLCs) that will be described in Section IV-
B.

In this abridged tutorial paper we will only analyze
Theorem 1 in the state feedback context. In this setting it
admits a simpler characterization and allows us to provide
intuition about the construction of a controller that achieves
a desired system response. The output feedback controller is
discussed in the extended version of this paper1 as well as
in [19].

1) State Feedback: Here we consider the problem of
designing a state feedback controller when the plant model
takes the form

P =

 A B1 B2

C1 D11 D12

I 0 0

 . (7)

In this setting the controller K has full access to the state as
C2 = I and the system response is simply given by the two
transfer matrices {R,M} which we now derive.

Taking the z-transform of the state dynamics from (1a)
gives

(zI −A)x = B2u + δx, (8)

1Available at www.cds.caltech.edu/syslevelsyn



where we let δx := B1w denote the disturbance affecting
the state.

By definition R is the system response mapping the
external disturbance δx to the state x. Likewise, M is the
system response mapping the disturbance δx to the control
action u, i.e. [

x
u

]
=

[
R
M

]
δx.

Substituting the dynamic state feedback control law u =
Kx into (8), the system response {R,M} as a function of
the controller K can be written as

R = (zI −A−B2K)−1

M = K(zI −A−B2K)−1. (9)

Using the above system response, we can now present the
state feedback version of Theorem 1.

Theorem 2: For the state feedback system (7), the follow-
ing are true:
(a) The affine subspace defined by[

zI −A −B2

] [R
M

]
= I (10a)

R,M ∈ 1

z
RH∞ (10b)

parameterizes all system responses from δx to (x,u),
as defined in (9), achievable by an internally stabilizing
state feedback controller K.

(b) For any transfer matrices {R,M} satisfying (10), the
controller K = MR−1 is internally stabilizing and
achieves the desired system response (9).
Proof: Necessity of Theorem 2 is provided in [19]. The

sufficiency part of the theorem is discussed in the extended
version of this paper as it provides a construction of the
controller K.

The following lemma connects the affine subspace con-
straint (10) to classical notions of stabilizability:

Lemma 1: The pair (A,B2) is stabilizable if and only if
the affine subspace defined by (10) is non-empty.
Combining Theorem 2 and Lemma 1 we have the following
implication:

(A,B2) stabilizable ⇐⇒ ∃ {R,M} s.t. (10) feasible.

Although the controller can be directly constructed ac-
cording to K = MR−1, the following disturbance-based
implementation has several advantages as we shall see in
Section IV-B. Let the system response {R,M} constrained
to be finite impulse response (FIR) transfer matrices with
horizon T . Now consider the disturbance-based controller
implementation:

δ̂x[t] = x[t]− x̂[t] (11a)

u[t] =

T−1∑
τ=0

M [τ + 1]δ̂x[t− τ ] (11b)

x̂[t+ 1] =

T−2∑
τ=0

R[τ + 2]δ̂x[t− τ ]. (11c)
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Fig. 6: Structure of the state feedback controller as described by implemen-
tation (12), where R̃ := I − zR and M̃ := zM.

The internal states of the controller (11) should be inter-
preted as follows: δ̂x is the controller estimate of the state
disturbance, and x̂ is a desired or reference state trajectory.
The estimated disturbance δ̂x[t] is computed by taking the
difference between the current state measurement x[t] and
the current reference state value x̂[t]. The control action u[t]
and the next reference state value x̂[t+1] are then computed
using past estimated disturbances δ̂x[t− T + 1], . . . , δ̂x[t].

Taking the z-transform of equations (11), we obtain their
representation in the frequency domain

δ̂x = x− x̂ (12a)

u = zMδ̂x (12b)

x̂ = (zR− I)δ̂x. (12c)

Combining equations (12) with (8) and (10), one can verify
that the estimated disturbance δ̂x[t] indeed reconstructs the
true disturbance δx[t−1] that perturbed the plant at time t−1;
hence δ̂x = z−1δx. It is then straightforward to show that
the desired system response {R,M} satisfying x = Rδx
and u = Mδx is achieved. Note that the previous argument
holds for any FIR horizon T as well as for T = ∞. The
controller architecture is surprisingly simple and is illustrated
in Figure (12).

Lemma 2: Consider the state feedback system (7). Given
any system response {R,M} lying in the affine subspace
described by (10), the state feedback controller K = MR−1,
with structure shown in Figure 6, internally stabilizes the
plant. In addition, the desired system response, as specified
by x = Rδx and u = Mδx, is achieved.

Proof: See extended version.

Remark 1: In stark contrast to the Youla approach, the
system level approach does not place constraints on the
controller. Instead constraints are placed on the entire system
response, in the case of state feedback, this corresponds to
placing constraints on {R,M}.

Remark 2: Theorem 2 provides a necessary and sufficient
condition for the system response {R,M} to be stable and
achievable, in that elements of the affine subspace defined by
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Fig. 7: Venn diagram illustrating how the various areas of distributed optimal
control interlink. Of note here is that the class of QI problems are contained
strictly inside the convex SLS class.

(10) parameterize all stable system responses achievable via
state-feedback, as well as the internally stabilizing controllers
that achieve them.

Remark 3: All controllers that are constructed from the
SLA are dynamic, recall that R and M are transfer matrices.
Note too that the Youla parameterization also only yields
dynamic controllers.

B. System Level Constraints

In this section we will show that applying constraints to
the SLPs developed in the previous section will allow for
a truly scalable synthesis framework. As the constraints
are imposed on the system response (as was traditionally
attempted with Youla) we refer to them as system level
constraints (SLCs). SLCs, together with the SLP and a
suitably chosen cost functional, lead to the system level
synthesis (SLS) problem which takes the form

minimize
{R,M,N,L}

g(R,M,N,L) (13a)

subject to equations (6a)− (6b) (13b)[
R N
M L

]
∈ S (13c)

where S is the SLC. The state feedback version of (13)
follows in an analogous manner. In section IV-C suitable
cost functionals and scalable synthesis procedures will be
discussed. The goal of this section is to describe the design
choices available for S and to examine how they can be used
to generate a localized system response. The SLC set S can
be viewed of as the intersection of three sets

S = L ∩ FT ∩ X ,

where L is a locality constraint, FT is is a spatiotemporal
constraint, and X is an arbitrary convex constraint that can
be used for miscellaneous constraints such as performance
bounds for example. With this description we arrive at the
localized SLS problem which is the same as optimization (13)
but with constraint (13c) replaced with[

R N
M L

]
∈ L ∩ FT ∩ X .

Before describing various spatial and temporal constrains
a remark about Youla and QI subspace constraints are in
order. Although it won’t be proved in this tutorial paper, it is
important to note that any controller of the form (??), subject
to constraints on Q can be equivalently expressed by K =
L −MR−1N. As a corollary, any subspace constraint that
is quadratically invariant can also be expressed in the SLS
framework [19]. To make this more clear, the hierarchies of
distributed control are plotted as a Venn diagram in Figure 7.

1) Locality Constraints L: Locality constraints are used
to enforce structure on a transfer matrix, specifically sparsity.
Such constraints may be desirable when there is a large
financial cost to install a controller, physically placing the
controller is difficult, or when obtaining a measurement from
certain area of the network is not possible.

Given a transfer matrix G ∈ RH∞, let Gij denote the
element at row i, column j of G. In this case the sparsity
constraint specifies which Gij = 0. Formally this called a
subspace constraint and is written as[

R N
M L

]
∈ L or

[
R
M

]
∈ L (14)

depending on whether or not the problem is an output, or
state feedback one.

Of particular interest are subspaces L that define trans-
fer matrices of sparse support. An immediate benefit of
enforcing such sparsity constraints on the system response
is that implementing the resulting controller can be done
in a localized way, i.e., each controller state and control
action can be computed using a local subset (as defined by
the support of the system response) of the global controller
state and sensor measurements. For this reason, we refer to
the constraint (14) as a localized SLC when it defines a
subspace with sparse support. Further, as we highlight in
the next section, such localized constraints also allow for
the resulting system response to be computed in a local-
ized way, i.e., the global computation decomposes naturally
into decoupled subproblems that depend only on local sub-
matrices of the state-space representation (1). Clearly, both
of these features are extremely desirable when computing
controllers for large-scale systems.

2) Temporal Constraints FT : Temporal constraints can be
enforced by requiring that the system response is made to be
a finite impulse response. In this case the system designer
can select the horizon length T . Given the parameterization
of stabilizing controllers of Theorem 1, it is trivial to enforce
that a system response be FIR with horizon T via the
following SLC

R,M,N,L ∈ FT . (15)

We argue that imposing a FIR SLC is beneficial in the
following ways:
(a) The closed loop response to an impulse disturbance is

FIR of horizon T , where T can be set by the control
designer. As such, the settling time of the system can be
accurately tuned.

(b) The controller achieving the desired system response can
be implemented using the FIR filter banks R̃, M̃,∈ FT ,



as illustrated in Figure 6. This simplicity of implemen-
tation is extremely helpful when applying these methods
in practice.

(c) When a FIR SLC is imposed, the resulting set of
stable achievable system responses and corresponding
controllers admit a finite dimensional representation –
specifically, the constraints specified in Theorem 1 only
need to be applied to the impulse response elements
{R[t],M [t], N [t], L[t]}Tt=0.

Remark 4: It should be noted that the computational ben-
efits claimed above hold only for discrete time systems. For
continuous time systems, a FIR transfer matrix is still an
infinite dimensional object, and hence the resulting parame-
terizations and constraints are in general infinite dimensional
as well.

3) Other Constraints X : Generic convex system perfor-
mance bounds of the form

g(R,M,N,L) < γ

for fixed γ can be included here. A typical choice is th H2-
norm. This will be elaborated on further in Section IV-C.

C. System Level Synthesis

In this section the SLP and SLCs that we have described
previously are combined to produce a synthesis algorithm
that we call the system level synthesis (SLS) problem. For
the state feedback case, the SLS problem takes the form

minimize
{R,M}

g(R,M)

subject to (10a)− (10b)[
R
M

]
∈ S. (16)

Provided that the cost function g is chosen to be convex, the
resulting SLP (16) will be a convex program.

The main difference between the system level approach
and the Youla/QI based based methods are that here, the
emphasis is placed on feasibility. For Youla based methods,
the hard work is in showing that the problem is QI and
thus convex. In comparison, the SLA requires constraint
satisfaction which may not always be possible. What happens
when feasibility is not net is dealt with in Section IV-D.

Localized LQG Control

In [12], [15] the localized LQG optimal control problem
was posed and solved. It can be recovered as a special case
of the SLS problem (16) by selecting the system norm ‖ · ‖
to be the H2 norm, and selecting the constraint set S to be a
spatiotemporal SLC. In the case of a state-feedback problem
[12], the resulting SLS problem is of the form

minimize
{R,M}

‖C1R +D12M‖2H2

subject to (10a)− (10b)[
R
M

]
∈ C ∩ L ∩ FT , (17)

for C a QI subspace SLC, L a sparsity SLC, and FT a FIR
SLC.

The observation that we make in [12] (and extend to the
output feedback setting in [15]), is that the localized SLS
problem (17) can be decomposed into a set of independent
sub-problems solving for the columns Ri and Mi of the
transfer matrices R and M – as these problems are inde-
pendent, they can be solved in parallel. Further, the sparsity
constraint L restricts each sub-problem to a local subset of
the system model and states, as specified by the nonzero
components of the corresponding column of the transfer
matrices R and M, allowing each of these sub-problems
to be expressed in terms of optimization variables (and
corresponding sub-matrices of the state-space realization
(6)) that are of significantly smaller dimension than the
global system response {R,M}. Thus for a given feasible
spatiotemporal SLC, the localized SLS problem (17) can be
solved for arbitrarily large-scale systems, assuming that each
sub-controller can solve its corresponding sub-problem in
parallel.2

D. Virtually Localizable Systems

It was mentioned in Section IV-C that feasibility may not
be possible in some circumstances. This may be because
there is not enough actuation in the system to control it, or
the time horizon in the FIR filters is too short. In this section
we briefly present a robustness result that can be seen as
providing virtual localization to system responses that would
otherwise be infeasible. The idea is reminiscent of classical
robust control, where we allow for a ∆ perturbation. This
work is presented in [18], but we summarize the main result
here and apply it to some simple case studies in the next
section.

Theorem 3: Let (Rc,Mc,∆) be a solution to[
zI −A −B2

] [Rc

Mc

]
= I + ∆

Then, the controller implementation

δ̂x = x− x̂

u = zMcδ̂x

x̂ = (zRc − I)δ̂x

internally stabilizes the system (A,B2) if and only if (I +
∆)−1 is stable.

Define ‖∆‖E1 := ‖∆>‖L1
. Theorem 3 can now be com-

bined with small gain theorems to provide simple sufficient
conditions for robust stability.

Corollary 1 (Robustness): Under the conditions of The-
orem 3, the closed loop system is stable if one of
‖∆‖H∞ , ‖∆‖L1

, ‖∆‖E1 < 1.
Proof: Classical, see [28] for H∞ and [29] for the

remainder.

Remark 5: Note that ‖∆‖L1
and ‖∆‖E1 are the worst

case `∞ → `∞ and `1 → `1 gains of ∆, respectively.

2We also show how to co-design an actuation architecture and feasible
corresponding spatiotemporal constraint in [16], and so the assumption of
a feasible spatiotemporal constraint is a reasonable one.



Fig. 8: Space time diagrams comparing the magnitude of the control action for two different control implementations. A single disturbance hits the centre
of the chain. Left: In the centralized setting there is infinite communication speed and thus the controller can sense the disturbance, compute the control
action, and broadcast it to the actuators instantly. The yellow line is the communication delay, in this instance zero delay corresponds to a vertical line.
Right: In the distributed setting [3] we illustrate the optimal solution where the communication speed is twice as fast as the plant dynamics. Here the
communication delay is clearly visible.

By combining Theorem 3 with corollary 1 a SLS problem
for virtually localizable systems is given by

minimize
Rc,Mc,∆

∥∥∥∥[C1 D12

] [Rc

Mc

]
(I + ∆)−1B1

∥∥∥∥
s.t.

[
zI −A −B2

] [Rc

Mc

]
= I + ∆[

Rc

Mc

]
∈ L ∩ FT ∩ X , ‖∆‖? < 1

(18)

where ‖ · ‖? is any of the norms described in corollary 1.
Unfortunately the SLS problem (18) is not convex due to
the objective function. To circumvent this problem, in [18]
we introduce a quasi-convex upper bound to the objective
function that can be efficiently optimized.

V. CASE STUDIES

In this section we consider a simple chain model where
each node in the chain corresponds to a single state. With this
example we will illustrate clearly the concept of localization
and explore the various trade offs between locality, commu-
nication speed, actuation density, and filter horizon. In the
extended paper we examine power networks where nodes in
the network have more complex dynamics (i.e. have multiple
states).

A. Chain System

The first example considered is a bi-directional chain with
n = 100 nodes, where each node corresponds to a scalar
state. The node dynamics are given by

xi[t+ 1] = α(xi[t] + κxi−1[t] + κxi+1[t]) + biui[t] +wi[t],

where α can be tuned to make the system more or less stable
and κ tunes the coupling strength. The value bi is given by
1 if there is an actuator at subsystem i, and 0 otherwise.
We place 40 actuators in the chain network, with actuator
location specified by i = 5j − 4 and 5j for j = 1, . . . , 20.
The objective function is the quadratic term ‖x‖22 + γ‖u‖22.
For this example we set κ = 1 and adjust the value of α
until the system has a spectral radius of 1.1.

1) FIR, Locality, and Communication Speed: We are now
able to specify the closed loop response (i.e. build the
controller). The two design parameters we consider first are
the FIR filter horizon and the size of the region we wish to
localize to. The FIR horizon determines the settling time
of the system, if this is chosen to be too short then the
system will fail to localize in time and the SLS problem
will fail to find a feasible solution. The spatial localization
is achieved by imposing a SLC on {R,M}. In this case
we impose a band structure with bands of width d. This
corresponds to the controller obtaining information from d-
hops of the physical system. The performance criteria is
chosen to be the H2-norm of the closed loop response. In
Figure 10 we plot the heat map of the control action for
(d, T ) = (4, 10). Figure 10 should be compared with the
centralized and distributed results shown in Figure 8.

The effects of varying the horizon length T are shown
in Figure 9. The plot shows that these parameters lead to
no degradation in performance with respect to a centralized
optimal controller, while leading to significant improvements
in synthesis and implementation complexity. If we choose
(d, T ) = (5, 15), there is only 0.3% performance degradation
compared to the centralized optimal controller, which corre-
sponds to (d, T ) = (99,∞). The result shown in Figure 9
(right) holds for a wide range of the parameters (κ, α) of the
plant and controller.

We next study the effects of communication delay on the
performance. We assume that the communication network
has the same topology as the physical network, and it takes
time tc for a sub-controller to transmit information to its
direct neighbors. The delay is normalized with respect to
the sampling time of the discrete time system (1), and hence
it may not necessarily be a whole integer. We adopt the fol-
lowing convention to handle fractional delays: if information
is received by a sub-controller between two sampling times
t and t + 1, then it may be used by the sub-controller to
compute its control action at time t+1. It is necessary to have
tc < 1 for the existence of a localized system response [16].



Fig. 9: Left: Closed loop performance vs. FIR horizon length T. Right: Closed loop performance vs. communication speed - (d, T ) = (13, 20) for
tc = 0.9, else (8, 20).
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Fig. 10: The system has been successfully localized in both time and space.
Moreover, it has been done more economically than in the centralized and
distributed case.

We choose (d, T ) = (8, 20) for the previous example, and
study the trade-off between communication delay tc and
the normalized H2 cost. As shown in Figure 9 (right),
communication delay only leads to slight degradation in
performance. Note that the degradation is mostly contributed
by the delay constraint. To verify this claim, we compare our
localized controller with the QI optimal controller on a 40-
state chain example. Simulation shows that the localized FIR
constraint (d, T ) = (8, 20) only leads to 0.03% degradation
compared to a QI optimal controller with the same delay
constraint.

In the next example we consider a 50 node chain with
sparse actuation, specifically there is only actuation present at
every other node in the network. The parameters α and κ are
tuned to make the system marginally stable. We set (d, T ) =
(4, 15), and study the effects of varying communication
delays. In Figures 11–13 we show how the system localizes
as the communication speed is reduced – here we define
communication speed as the reciprocal of communication
delay. The performance metric in this case was chosen to be
the E1-norm of the closed loop. The virtual localization (c.f.
Section IV-D) is needed in order to provide a feasible SLS
problem when communication delay exceeds 2/3. Without
the robustness provided by Theorem 3, the resulting system
level synthesis problems would have been infeasible. The
leakage can be seen clearly in the heat maps. What is not
shown (in the short version of this tutorial) is the striking
result that even when the communication is much slower

than the plant, performance is still considerably better than
when running in open-loop. Looking at Figures 11–13, the
vertical yellow lines represent the temporal constraints (i.e.
the FIR horizon length) placed on the closed loop system.
The horizontal lines correspond to the spatial constraint.
Without the virtual localization result, any time there is
leakage outside of the intersection of the horizontal and
vertical lines as seen in Figures 12–13 then the synthesis
problem would be infeasible and the interpretation would be
that under this choice of design parameters the system could
not be sufficiently localized.

2) Trade Offs: Finally we present a series of examples
where the localization effects are clearly seen for varying
design parameters. The open loop parameters remain un-
changed from the previous example. The performance metric
is the H2 norm for the closed loop (and the E1 norm for the
∆ block where appropriate) - these values are provided in the
figure captions. In Figure 14 we show how the localization
of the closed loop changes as a function of the actuation
density. At a value of 1 there is actuation at each node, at 0.5
there is actuation every other node. It is clear that the virtual
localization allows for the design of controllers which require
fewer actuators. In Figure 15 the sparsity measured in terms
of the number of d-hops of the plant topology is varied. This
has the effect of pushing the horizontal spatial constraints
closer together as d decreases. In the final example, the FIR
filter horizon is decreased causing the horizontal temporal
constraint to move to the left, limiting the time that the
disturbance is allowed to have any impact on the state.

VI. CONCLUSION

In this abridged tutorial paper we have presented the key
aspects of the system level synthesis framework. We have
created a wiki www.cds.caltech.edu/syslevelsyn
that contains a much extended version of this paper, links to
recent papers, case studies, and code to run the simulations
from this paper.
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