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Abstract— In this paper, we propose a new robust analysis
tool motivated by large-scale systems. The H1 norm of a system
measures its robustness by quantifying the worst-case behavior
of a system perturbed by a unit-energy disturbance. However,
the disturbance that induces such worst-case behavior requires
perfect coordination among all disturbance channels. Given
that many systems of interest, such as the power grid, the
internet and automated vehicle platoons, are large-scale and
spatially distributed, such coordination may not be possible,
and hence the H1 norm, used as a measure of robustness,
may be too conservative. We therefore propose a cardinality
constrained variant of the H1 norm in which an adversarial
disturbance can use only a limited number of channels. As this
problem is inherently combinatorial, we present a semidefinite
programming (SDP) relaxation based on the `1 norm that
yields an upper bound on the cardinality constrained robustness
problem. We further propose a simple rounding heuristic based
on the optimal solution of our SDP relaxation, which provides
a corresponding lower bound. Motivated by privacy in large-
scale systems, we also extend these relaxations to computing
the minimum gain of a system subject to a limited number of
inputs. Finally, we also present a SDP based optimal controller
synthesis method for minimizing the SDP relaxation of our
novel robustness measure. The effectiveness of our semidefinite
relaxation is demonstrated through numerical examples.

I. INTRODUCTION

Structure, and in particular sparsity, has proven to be a
powerful tool in the analysis and design of large-scale con-
trol systems. Lyapunov analysis [1], distributed performance
certification [2], distributed optimal controller synthesis [3]
and controller architecture design [4] all rely on and ex-
ploit structural properties of the underlying system to solve
seemingly intractable problems in a computationally efficient
manner. In contrast, in the context of robust control, adding
additional structure to system uncertainty has traditionally
made analysis and synthesis more difficult. For instance,
linear matrix inequality (LMI) based necessary and sufficient
conditions for the robust stability of a system subject to an
unstructured delta block can be derived, but no such results
exist if we restrict ourselves to highly structured delta blocks
[5].

In this paper, we ask the following question, which we
later interpret in terms of robustness to structured distur-
bances: given a large-scale system with p input channels,
what k ⌧ p input channels should be used to maximally
(minimally) perturb the system using a unit energy input. We
show that the answer can be obtained by suitably modifying
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the power semi-norm based definition of the H1 norm of a
system to incorporate a cardinality constraint on the input; we
therefore call the resulting performance metric the k-sparse
H1 norm of the system.

We argue that questions pertaining to the maximal and
minimal gains of a system restricted to a sparse subset of
inputs arise naturally in the context of distributed system
robustness analysis, consensus robustness analysis, privacy
and system security. We further show that the resulting
optimization problems are in fact a generalization of the
maximal and minimal sparse eigenvalue problems, objects
of central importance in certifying the performance of com-
pressed sensing matrices [6] and in sparse PCA [7]. We
also show touch upon how these restricted gains relate to
similar conditions developed in the Regularization for Design
(RFD) [4] framework that guarantee the recovery of optimal
controller architectures.

Of course, the resulting optimization problems are combi-
natorial in nature, and are easily seen to be computationally
difficult in general. Leveraging a novel primal formulation
of the KYP lemma [8], we propose a semidefinite relaxation
(akin to that proposed in [7]) for computing lower/upper
bounds on the resulting minimal/maximal restricted gains
of the system, and a simple rounding heuristic to obtain
corresponding upper/lower bounds. We further derive the
dual of the resulting semidefinite program (SDP) and show
that it has similar structure to the traditional KYP LMI
test, allowing for standard semidefinite programming based
controller synthesis methods to be applied.

The paper is organized as follows: in Section II, we
formally introduce the k-sparse H1 norm and the analogous
k-sparse minimal gain of a system, and elucidate on sev-
eral engineering applications. We also make connections to
compressed sensing, restricted isometry constants and sparse
PCA, as well as RFD. In Section III we present both a
semidefinite relaxation and a rounding heuristic to obtain
lower and upper bounds on the k-sparse H1 norm of a
system. The dual to our semidefinite relaxation is derived
in Section IV, and we show how it can be used to synthesize
a centralized controller that minimizes the relaxed k-sparse
H1 norm of the system. We present numerical examples in
Section V, and end with a summary and discussion of future
directions in Section VI.

A. Notation

We use RH1 to denote the space of stable real-rational
proper transfer matrices. We use lower case Latin letters
x to denote vectors, bold lower case Latin letters x to
denote signals, upper case Latin letters X to denote matrices



and upper case calligraphic letters X to denote elements of
RH1.

We recall the definition of the power semi-norm, kxk2P :=
lim

N!1
1
N

PN�1
k=0 x⇤

kxk. For a matrix X , we denote the (i, j)th
entry of X by Xij , its conjugate transpose by X⇤, its
transpose by X>, the projection of X onto its diagonal
elements by diag (X), and the range space and the null
space of X by Range (X) and Ker (X), respectively. In
addition, |X| denotes the element-wise absolute value of X ,
and 1 denotes the all ones vector. We use X ⌫ 0 to denote
that X is positive semidefinite, and X � 0 to denote that X
is positive definite.

II. k-SPARSE H1 ANALYSIS

We consider a discrete time linear time invariant system1

M(z) = C(zI �A)�1B +D 2 RH1. (1)

Recall that the H1 norm of M can be computed as the
worst case gain in the output of the system induced by a
disturbance of unit power semi-norm [9], [10], [8]:

kMk21 :=maximize
w,x

kCx+Dwk2P
subject to xk+1 = Axk +Bwk, x0 = 0,

kwk2P  1.

(2)

The H1 norm measures the worst-case behavior of a system
subject to power semi-norm bounded disturbances, and it
has well known implications on the robust stability of a
system subject to unstructured uncertainty [5], as well as
many practical interpretations [9].

One such interpretation is that an attacker seeks to max-
imize their disruption of the system using the disturbance
w – in this case, the optimal disturbance w? to optimiza-
tion problem (2) is precisely a disturbance that maximizes
the attacker’s impact on the system. Taking an opposite
perspective, from the viewpoint of a system designer, the
maximizing disturbance denotes a weak point of the system
that may need to be addressed.

A seemingly innocuous assumption in the above analysis
is that the attacker can simultaneously coordinate all of the
disturbance channels: although reasonable in a centralized
setting, this assumption may prove to be quite conservative
when M is a distributed system. In particular, if there are
many possible disturbances (B has many columns), and
these disturbances enter through channels that are physically
separated, it may be overly conservative to consider the
response of the system to a centralized attack. In order
to alleviate this conservativeness, we propose a cardinality

constrained variation of optimization problem (2), in which
we assume that at most k disturbance channels can have

1Although we present our analysis for discrete-time systems, analogous
arguments and results hold for continuous time systems.

non-zero power semi-norms2:

{µ̄k (M)}2 := maximize
w,x

kCx+Dwk2P
subject to xk+1 = Axk +Bwk, x0 = 0

kwk2P  1, Card (w)  k.
(3)

We refer to µ̄k (M) as the k-sparse H1 norm of system M.
It should be clear that µ̄k (M)  kMk1 for all k, but the

size of the difference between these two quantities is unclear.
If the gap is small, then this implies that the system exhibits
near worst-case behavior even when perturbed by only a
few carefully chosen disturbances, indicating a potential
vulnerability that may need to be addressed. Conversely, if
the gap is large, then considering the H1 norm of a system
as a measure of robustness may be overly conservative.
Regardless as to which situation occurs, the k-sparse H1
norm of a system provides valuable insight into its behavior
and robustness properties.

Before elaborating on practical interpretations of the k-
sparse H1 norm of a system, we show that the gap between
µ̄k (·) and k · k1 can indeed be made arbitrarily large for
a fixed k by letting the state dimension of the underlying
system tend to infinity. We defer illustrating the case for
which the gap between the k-sparse and standard H1 norm
of a system is small to Section V.A, where we present a
power-grid motivated example for which µ̄3(M) ⇡ kMk1.

Example 1: Consider a system M, as in (1), described

by state-space parameters (A, In, In, 0n,n), where A =
0.99 1

n11
> + 0.1(In � 1

n11
>) 2 Rn⇥n

, In is the n-by-n
identity matrix, and 0n,n is the n-by-n zero matrix. Due to the

special structure of the state-space parameters, optimization

problems (2) and (3) can be solved analytically, and it can

be shown that

µ̄k(M)
kMk1

⇡
q

k
n . Thus for a fixed k the gap

between µ̄k (M) and kMk1 can be made arbitrarily large

by letting n ! 1. Figure 1 shows

µ̄k(M)
kMk1

for k = 5 and

n = 5, . . . , 30.
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Fig. 1: The ratio, µ̄5(M)/kMk1 for n = 5, · · · , 30.

Robustness analysis for distributed system: Quantifying
the robustness of a distributed system, such as the power grid,

2We define the cardinality of a power signal, Card (w) as the number of
indices i such that kwikP > 0. Notice that because we use the power semi-
norm in this definition, all signals with finite `2 norm have a cardinality of
0, as their power semi-norm is 0.



allows the system designer to plan for and mitigate the worst
case effects of un-modeled dynamics and disturbances. The
need for robustness is increasingly important in the context
of the power grid as it becomes more reliant on intermittent
distributed energy resources, such as renewables. However,
as mentioned, H1 analysis assumes that all such distributed
energy resources coordinate with each other to destabilize
the power network, which may be overly conservative and
lead to loss of efficiency. Rather, we propose using the k-
sparse H1 norm of the system to identify and quantify
vulnerabilities of the system to potentially more realistic
disturbances.

Robustness analysis for consensus network: The well
studied problem of consensus (or synchronization) [11], [12],
[13] is one in which a set of agents seek to converge to
a common value using simple local averaging rules. When
these local rules are linear and time invariant, the consensus
protocol can be modeled as an LTI system. In this case, the A
matrix defining the system is shown to satisfy the following
properties [14]: A1 = 1, A>

1 = 1, and ⇢(A� 1
n11

>) < 1,
where n is the number of nodes in the network.

Although typically considered in a disturbance free set-
ting, it is also natural to ask how much local disturbances
applied to individual agents can affect the system’s ability to
reach consensus. Concretely, assume that each agent can be
corrupted by a separate disturbance, i.e., that B = In, and
we measure the effect of the disturbances on the deviation
of each state xj

k from the consensus value, as encoded by
zjk = xj

k � 1
n

P
i x

i
k, such that C = In � 1

n11
>, and D = 0.

Note that the marginally stable mode of A is unobservable
with respect to the measured output defined by C, and the
system has a finite H1 norm and k-sparse H1 norm.

Whereas the H1 norm of the resulting system measures
the effects of a worst-case attack on all agents, the k-sparse
H1 norm measures the effects of worst-case attack on only
k agents. From an attacker’s perspective, this may result in a
more realistically implementable strategy, and from a system
designer’s perspective, this provides valuable information
as to which agents should be most closely monitored and
protected from attack.

A. The k-sparse minimal gain of a system

We can also define the minimal k-sparse gain of system
M, which we denote by µ

k
(M) as

{µ
k
(M)}2 := minimize

w,x
kCx+Dwk2P

subject to xk+1 = Axk +Bwk, x0 = 0

kwk2P � 1, Card (w)  k.
(4)

Privacy: An immediate interpretation of this optimization
problem is in terms of privacy. Suppose that a publicly
available variable is defined by zk = Cxk, and that a
user wishes to transfer at least � units of power to yk =
Gxk + Hwk while minimizing their effect on the public
variable. The optimal action for the user to take can be
determined by solving optimization problem (4) with the

added constraint

kGx+Hwk2P � �2 (5)

System security: One can also view the user in the above
scenario as an attacker, and the publicly available variable
as a system monitor: in this case, the optimal input w?

corresponds to the least detectable input that still disrupts the
output y by � units of power. Allowing for sparse optimal
inputs w? makes for more realistically implementable actions
by either a user or an attacker.

Connections to the Restricted Isometry Property and Reg-

ularization for Design: Our problem formulation seeks the
minimal and maximal gains of a linear operator restricted
to k-sparse subspaces. When the linear operator is a static
matrix D, instead of a dynamical system (A = B = C =
0), then the cardinality constrained optimization problems
(3) and (4) compute precisely the maximal and minimal
restricted eigenvalues [15] of the matrix D>D, that is
the maximal and minimal gains of D restricted to sparse
subspaces. They are also closely linked to the Restricted
Isometry Property (RIP) constant of the matrix, which can
be used to state conditions for the recovery of sparse vectors
[6] via convex optimization. The approach of computing
restricted eigenvalues and their corresponding eigenvectors
can also be used to perform sparse principal component
analysis (sPCA) [7]. We can therefore view optimization
problem (3) as a tool for bounding the restricted eigenvalues
of an infinite dimensional LTI operator acting on signals
in `2. Moreover, the k-sparse H1 norm and the k-sparse
minimal gain of a system also have natural connections to
the Regularization for Design (RFD) framework developed
in [4]. In the RFD framework, atomic norms [16] are added
as convex penalties to traditional model matching problems
in order to design architecturally simple controllers. Control
theoretic analogs to the recovery conditions found in the
structured inference literature are stated in terms of restricted
gains that are closely related to the k-sparse H1 norm and
k-sparse minimal gain of a system – we are currently actively
exploring the application of the computational methods de-
veloped in this paper to computing bounds on these restricted
gains.

III. SDP RELAXATION OF k-SPARSE H1 ANALYSIS

As posed, optimization problems (3) and (4) are in-
tractable: the optimization variables are infinite dimensional,
and the cardinality constraint introduces a combinatorial
aspect to the problem. In order to develop a computationally
tractable framework, we propose an SDP based convex
relaxation of the k-sparse H1 norm (3) and the k-sparse
minimal gain (4). We begin by reviewing recent results on
traditional H1 analysis [8], [17].

A. Review of H1 analysis

From previous work [8], [17], we know that using the
gramian

V := lim
n!1

1

N

N�1X

k=0


xk

wk

� 
xk

wk

�⇤
⌫ 0,



optimization problem (2) can be transformed to the following
equivalent finite dimensional semidefinite program:

maximize
V⌫0

Tr

✓
C⇤C C⇤D
D⇤C D⇤D

�
V

◆

subject to
⇥
I 0

⇤
V


I
0

�
=

⇥
A B

⇤
V


A⇤

B⇤

�

n+mX

i=n+1

Vii  1,

(6)

where n is the dimension of the state x, m is the dimension
of the disturbance w, and Vii is the ith diagonal component
of V . The key idea of the proof is to construct the sinusoid
w that achieves the H1 norm using a rank one solution
of the semidefinite program (6). In the construction of w,
there is no prior structure imposed on w. This means that,
in general, all m disturbance channel are active and must
therefore coordinate their actions.

B. SDP relaxation of k-sparse H1 analysis

Building on the result of the previous section, we propose
and analyze a semidefinite relaxation of optimization prob-
lem (3) that can be used to compute an upper bound to the
k-sparse H1 norm of a system. The relaxation to the k-
sparse minimal gain of a system (4) is analogous, and stated
without proof. To begin with, let us use the matrix

V := lim
n!1

1

N

N�1X

k=0


xk

wk

� 
xk

wk

�⇤
⌫ 0,

as in H1 analysis. For notational convenience, we partition

V =


X R
R⇤ W

�
where X 2 Cn⇥n, and W 2 Cm⇥m.

We begin with a simple observation that lets us translate
the cardinality constraint on w to one on the matrix W .

Proposition 1: Card (w)  k if and only if

Card (diag (W ))  k.

Proof: From the definition, Wii = kwik2P , where Wii is
(i, i)th entry of W and wi is the ith component of the vector-
valued signal w. Therefore Card (w) = Card (diag (W )).

By applying the same procedure from [8] used to derive
the SDP used for H1 analysis, we obtain the following
optimization problem, which provides an upper bound of (3).

maximize
X,R,W

Tr

✓
C⇤C C⇤D
D⇤C D⇤D

� 
X R
R⇤ W

�◆

subject to X =
⇥
A B

⇤ X R
R⇤ W

� 
A⇤

B⇤

�

Tr (W )  1

Card (diag (W ))  k

X R
R⇤ W

�
⌫ 0.

(7)

For the standard H1 problem, this SDP relaxation is
tight: the proof consists of constructing a disturbance w

that achieves the optimal value of the SDP. Similarly, once
a solution to optimization problem (7) is obtained, we can
consider a system with disturbance inputs specified by the
support of the optimal disturbance, and thus apply the
methods of [8]. Thus, the cardinality constrained SDP (7)
is in fact equivalent to k-sparse H1 optimization (3).

In applying the techniques from [8], we have re-
duced the optimization problem to a finite dimensional
semidefinite program with an added cardinality constraint
Card (diag (W ))  k. In order to circumvent the in-
tractability of this constraint, we propose using an `1 re-
laxation [18]. This approach is inspired by [7], in which the
authors consider the `1 relaxation of an analogous cardinality
constraint to obtain a semidefinite relaxation of the sparse
PCA problem, in which one seeks the leading sparse singular
vector of a matrix (as mentioned previously, this is closely
related to the RIP constant of a matrix and to analogous
quantities in RFD). In order to adapt this idea to our problem
formulation, we need the following observation.

Proposition 2: Consider W 2 Cn⇥n
such that W ⌫ 0,

Tr (W )  1. Then, 1

T |W |1  n.

Proof: Consider a Hermitian matrix H where

Hij =

(
1 if i = j

ei✓ij if i 6= j,

for some ✓ij . If we construct H such that Hij = ei\Wij ,
then 1

T |W |1 = Tr (H⇤W ). This shows that 1

T |W |1 
supH Tr (H⇤W ), and from the Von Neumann’s trace in-
equality [19], we have

Tr (H⇤W ) 
X

i

�i(W )�i(H),

where �i is the ith singular value of the matrix. Further-
more, by definition of H we have �1(H)  P

i �i(H) =
Tr (H) = n. Therefore,

Tr (H⇤W ) 
X

i

�i(W )�i(H)  �1(H)
X

i

�i(W )

 nTr (W )  n,

and 1

T |W |1  supH Tr (H⇤W )  n. Notice that this
upper bound is achieved by W = 1

n11
T , which shows the

inequality is tight.
We can now connect the `1 norm bound to the cardinality
constraint of optimization problem (3).

Proposition 3: Consider a positive semidefinite matrix W
with Tr (W )  1 and Card (diag (W ))  k. Then,

1

T |W |1  k.

Proof: Without loss of generality, we can assume that
W11, · · · ,Wii for 1  i  k are not zero, where Wii is
(i, i)th entry of W . Then from the Schur complement, we
can easily check that W should have the form

W =


W̃ 0
0 0

�
,



where W̃ is a i ⇥ i Hermitian matrix. Therefore, from
Proposition 2, 1

T |W |1 = 1

T |W̃ |1  i  k, which
concludes the proof.

In the cardinality constrained problem (7), the W matrix
satisfies the requirements of Proposition 3. This shows that
if we replace the cardinality constraint on W in optimization
problem (7) by a suitable `1 norm bound, then we have
a larger feasible set. Although this procedure provides an
upper bound to (7), the resulting optimization becomes a
semidefinite program, which can be solved efficiently [20].
Therefore, we propose the following `1 based relaxation of
(7), which is the main optimization problem in this paper.

{µ̄sdp
k (M)}2 := max

X,R,W
Tr

✓
C⇤C C⇤D
D⇤C D⇤D

� 
X R
R⇤ W

�◆

s.t. X =
⇥
A B

⇤ X R
R⇤ W

� 
A⇤

B⇤

�

Tr (W )  1 (8)
1

T |W |1  k

X R
R⇤ W

�
⌫ 0.

Although we omit the details, a similar argument for
continuous time systems yields

maximize
X,R,W

Tr

✓
C⇤C C⇤D
D⇤C D⇤D

� 
X R
R⇤ W

�◆

subject to XA⇤ +AX +R⇤B⇤ +BR = 0

Tr (W )  1

1

T |W |1  k

X R
R⇤ W

�
⌫ 0.

(9)

C. Extension to k-sparse minimal gain

In the previous section, we introduced a k-sparse minimal
gain. A similar approach can be used to obtain the following
SDP relaxation of (4).

{µsdp
k

(M)}2 := min
X,R,W

Tr

✓
C⇤C C⇤D
D⇤C D⇤D

� 
X R
R⇤ W

�◆

s.t. X =
⇥
A B

⇤ X R
R⇤ W

� 
A⇤

B⇤

�

Tr (W ) � 1

1

T |W |1  k

X R
R⇤ W

�
⌫ 0

Similarly, for the continuous time case, we have

minimize
X,R,W

Tr

✓
C⇤C C⇤D
D⇤C D⇤D

� 
X R
R⇤ W

�◆

subject to XA⇤ +AX +R⇤B⇤ +BR = 0

Tr (W ) � 1

1

T |W |1  k

X R
R⇤ W

�
⌫ 0.

(10)

D. Rounding heuristic for solution refinement

Let W ? be the optimal solution to optimization problem
(8). Since this matrix contains information about the worst-
case disturbance, we can extract candidate worst case dis-
turbance channels, and use those to obtain a corresponding
lower bound to the value of optimization problem (3).
The approach is simple: identify the k largest entries of
diag (W ), which we denote by {Wi1i1 ,Wi2i2 , · · · ,Wikik},
and then restrict B and D to the column space corresponding
to these disturbance channels. We can then compute the
traditional H1 norm of the system defined by these restricted
B and D matrices using classical methods. As we are
choosing specific disturbance channels, this procedure yields
a lower bound of the k-sparse H1 norm (3) of a system.
The procedure can thus be summarized as follows:

Rounding heuristic:
1) Solve (8) to obtain W ?.
2) Find the indices {i1, · · · , ik} such that W ?

i1i1
� · · · �

W ?
ikik

� · · · � Winin .
3) Construct E :=

⇥
ei1 · · · eik

⇤ 2 Rm⇥k using a
standard basis {ei} of Rm.

4) Let B̃ := BE, D̃ = DE, and obtain µ̄round
k (M) :=

kB̃(ei✓I �A)�1C + D̃k1.
Notice that step 3 chooses i1, · · · , ik to be the active distur-
bance channels. From this rounding procedure we obtain the
inequality

µ̄round
k (M)  µ̄k (M)  µ̄sdp

k (M)

Therefore, if the gap between µ̄round
k (M) and µ̄sdp

k (M) is
not large, then µ̄round

k (M) effectively solves the k-sparse
H1 problem and returns a candidate set of worst case
disturbance channels. Notice that this heuristic can also be
applied to the continuous time case and the minimal gain
computation, but we omit these details.

IV. DUAL PROBLEM & CONTROLLER SYNTHESIS

As optimization problem (8) is an SDP, it is natural to
consider its Lagrangian dual problem. To do this, let us begin
with the following observation.

Proposition 4: For w � 0, � 2 C,

sup
x2C

{�w|x|+Re (�x)} =

(
0 if |�|  w

+1 otherwise

.

Proof: Suppose |�| > w. Let x = ↵�⇤. Then

�w|x|+Re (�x) = ↵|�|(|�|� w).

By taking ↵ ! 1, we obtain the result.
Suppose |�|  w. From Cauchy-Schwartz inequality,

�w|x|+Re (�x)  �w|x|+ |�||x|  (|�|� w)|x|  0,

for all x 2 C. Since the upper bound is achieved by x = 0,
we can conclude the proof.



With this technical tool in hand, we may proceed to derive
the dual to optimization problem (8). First, we form the

Lagrangian function in terms of V =


X R
R⇤ W

�
.

L(V, P,Q,�, t) :=

Tr (QV ) +Tr

✓
C⇤C C⇤D
D⇤C D⇤D

�
V

◆

+Tr

✓
P

✓⇥
A B

⇤
V


A⇤

B⇤

�
� ⇥

I 0
⇤
V


I
0

�◆◆

+�

✓
1�Tr

✓
0 0
0 I

�
V

◆◆

+t

✓
k �Tr

✓
0 0
0 11

T

�
|V |

◆◆
,

where P = P ⇤, Q ⌫ 0, � � 0, t � 0.
Using cyclic property of the trace operator and

from Proposition 4, we can obtain the dual function
d(Q,P,�, t) := supV=V ⇤ L(V, P,�, t) which becomes � +
k · t when,

����Q+


C⇤C C⇤D
D⇤C D⇤D � �I

�
+


A⇤PA� P A⇤PB
B⇤PA B⇤PB

�����



0 0
0 t11T

�
, (11)

where the inequality  is a component-wise inequality. In
addition, d(P,�, t) = +1 if (Q,P,�, t) does not satisfy
(11). By defining Y = Y ⇤ to be the lower right bottom of
(11), we obtain the following dual optimization problem to
(8):

minimize
P,Y,�,t

�+ k · t

subject to

A⇤PA� P A⇤PB
B⇤PA B⇤PB � �I � Y

�

+


C⇤C C⇤D
D⇤C D⇤D

�
� 0

|Y |  t11T

P = P ⇤, Y = Y ⇤, t � 0,� � 0.

(12)

Notice that if we set t = 0, then we recover the SDP
derived from the KYP lemma which computes the H1 norm
of the system. It is clear that t = 0 is a suboptimal solution of
(12), and therefore we can easily see that the H1 norm is an
upper bound of (12) which is consistent with the definition
of the k-sparse H1 norm.

In addition, it can be easily checked that the dual problem
(12) is strictly feasible when A is stable by setting Y = 0,
t = 1 and sufficiently large �. In particular, for sufficiently
large �, only the upper left block of the LMI constraint in
(12) is relevant, and if A is stable, one can construct a P � 0
such that A⇤PA� P +C⇤C � 0. Thus the dual problem is
strictly feasible, and by Slater’s condition, the duality gap is
zero.

A similar derivation for a continuous time system, (9),
gives us

minimize
P,Y,�,t

�+ k · t

subject to

A⇤P + PA PB

B⇤P ��I � Y

�

+


C⇤C C⇤D
D⇤C D⇤D

�
� 0

|Y |  t11T

P = P ⇤, Y = Y ⇤, t � 0,� � 0,

(13)

although we omit the detailed derivation.

A. k-sparse H1 synthesis

Here we modify the LMI approach to H1 controller
synthesis presented in [21] so that the resulting controller
minimizes the proposed semidefinite relaxation (12) of the
k-sparse H1 measure. To begin with, consider the dynamical
system

xk+1 = Axk +B1wk +B2uk

zk = C1xk +D11wk +D12uk

yk = C2xk +D21wk,

with dynamic controller

⇣k+1 = AK⇣k +BKyk

uk = CK⇣k +DKyk.

The synthesis goal is to find a stabilizing controller
(AK , BK , CK , DK) that minimizes our SDP relaxation (8)
of the k-sparse H1 norm of the closed loop system3

(Acl, Bcl, Ccl, Dcl), subject to ⇢(Acl) < 1. From this
stability requirement, together with the Lyapunov stability
theorem, we can assume that P � 0 holds in optimization
problem (12). In addition, we assume that (A,B2, C2) is
stabilizable and detectable, thus ensuring feasibility.

Using (Acl, Bcl, Ccl, Dcl), the matrix inequality constraint
in the dual of k-sparse H1 analysis, (12), is given by


A⇤

clPclAcl � Pcl A⇤
clPclBcl

B⇤
clPclAcl B⇤

clPclBcl � �I � Y

�

+


C⇤

clCcl C⇤
clDcl

D⇤
clCcl D⇤

clDcl

�
� 0

(14)

We change the non-strict matrix inequality of optimization
problem (12) to a strict inequality: as Acl is required to
be stable, a strictly feasible solution exists for a given
(Acl, Bcl, Ccl, Dcl), and therefore this variation does not
change the optimal value of the following synthesis problem

minimize
AK ,BK ,CK ,DK ,Pcl,Y,�,t

�+ k · t
subject to (14), |Y |  t11>, Pcl � 0

Y = Y ⇤, t � 0,� � 0.

(15)

3We refer the reader to [21] for details on how to express the closed loop
system parameters (Acl, Bcl, Ccl, Dcl) in terms of the open loop state-
space parameters and (AK , BK , CK , DK).



Now let T = �I +Y , then since T �D⇤
clDcl � 0, T is pos-

itive definite. Conjugating constraint (14) by

I 0
0 T�1/2

�
,

we see that (14) is true if and only if k(Ccl(zI �Acl)Bcl +
Dcl)T�1/2k1 < 1. This representation of (14) allows for
a simple modification of the classic LMI method for H1
synthesis [21], yielding the the following two SDPs:

minimize
P,Q,Y,�,t

�+ k · t

subject to

P In
In Q

�
� 0

⇧⇤
c

2

4
AQA⇤ �A AQC⇤

1 B1

C1QA⇤ C1QC⇤
1 � I D11

B⇤
1 D⇤

11 ��I � Y

3

5⇧c � 0

⇧⇤
o

2

4
A⇤PA�A A⇤PB1 C⇤

1

B⇤
1PA B⇤

1PB1 � �I � Y D⇤
11

C1 D11 �I

3

5⇧o � 0

|Y |  t11>, Y = Y ⇤, t � 0,� � 0

(16)

where

⇧c =


Nc 0
0 I

�
⇧o =


No 0
0 I

�

Range (Nc) = Ker

�⇥
B⇤

2 D⇤
12

⇤�
, N⇤

cNc = I

Range (No) = Ker

�⇥
C2 D21

⇤�
, N⇤

oNo = I

After obtaining P,Q by solving the above SDP (16), we

construct Pcl by Pcl =


P P ⇤

2

P2 I

�
, where P2 is given by

P � Q�1 = P2P
⇤
2 . By applying the Schur complement to

(14), we have
2

664

P�1
cl 0 Acl Bcl

0 I Ccl Dcl

A⇤
cl B⇤

cl Pcl 0
C⇤

cl D⇤
cl 0 �I + Y

3

775 � 0 (17)

which is clearly an LMI for a fixed Pcl. Finally, the following
optimization returns the controller that achieves the optimal
value of (16):

minimize
AK ,BK ,CK ,DK ,Y,�,t

�+ k · t
subject to (17), |Y |  t11>, Y = Y ⇤

t � 0,� � 0.

(18)

In summary, two SDPs (16) and (18) are needed to
construct the controller. The first step is to solve (16) to
find P,Q to construct Pcl, and then solve (18) to find the
controller (AK , BK , CK , DK).

V. NUMERICAL EXAMPLES

A. A linearized swing dynamics

We consider the linearized swing dynamics of the New
England power network [22], a widely-used benchmark
example in the power control community. The system pa-
rameters can be found online [23]. We denote the nominal
frequency by !0, the voltage magnitude at bus i by vi, and
the nominal phase angle bus i by ✓0i . Going forward, all

variables presented should be interpreted as deviations from
this nominal steady state.

We consider the linearized swing dynamics [24].

d

dt


!G

P

�
=

�H�1DG H�1M1

�YM>
1 �YM>

2 D�1
L M2

�

| {z }
A


!G

P

�

| {z }
x

+


H�1 0
0 �YM>

2 D�1
L

�

| {z }
Bw


w1

w2

�

| {z }
w

,

where !G 2 RnG and !L 2 RnL are the frequencies at the
generator bus and the load bus, respectively, P is the branch
power flow vector, M is the signed incidence matrix of the
topology of the power network, M1 =

⇥
InG 0nL⇥nL

⇤
M ,

M2 =
⇥
0nG⇥nG InL

⇤
M , and H , DG, DL, and Y are

diagonal matrices with entries specified by the inertia of
the synchronous generator, the damping term of each bus,
the damping term of each line and the admittance of the
transmission line, respectively. We note that nG = 10 and
nL = 29, and thus there are 39 potential disturbance channels
that can affect the system.

We set the output to be

z =


H1/2 0
0 Y �1/2

�

| {z }
C


!G

P

�
,

as 1
2z

⇤z corresponds to the total energy stored in the lin-
earized swing dynamics.

Fig. 2 compares the k-sparse H1 norm obtained using the
rounding heuristic described in Sec. III.D to the standard H1
norm of the system. As can be seen, the gap between 3-sparse
H1 norm and the H1 norm is negligible, even though only
3 out of a possible 39 disturbances are used. This shows
that the buses identified by the 3-sparse H1 analysis are a
potential weak spot of the New England power network.
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Fig. 2: The H1 norm and the lower bound of k-sparse H1
norm of New England power network. Bus 25, 30, 37 are
identified in 3-sparse H1 analysis.



k-sparse k-sparse H1 norm
controller 1 2 3 H1

1 1.1826 1.3939 1.5078 1.7152
2 1.2289 1.3340 1.4116 1.5258
3 1.2509 1.3539 1.4053 1.5159

H1 1.3832 1.4172 1.4389 1.5050

TABLE I: k-sparse H1 norms of the controller obtained
from our method. The minimum value in each column is
emphasized.

B. k-sparse H1 synthesis

To illustrate the effectiveness of our synthesis approach,
we apply our method to the following system:

A =

2

4
0.5 0.2 0
0.2 0.5 0.2
0 0.2 0.5

3

5 , B1 =
⇥
I3 03⇥3

⇤
, B2 = I3

C1 =


I3

03⇥3

�
, D11 = 06⇥6, D12 =


03⇥3

I3

�

C2 = I3, D21 =
⇥
03⇥3 I3

⇤
, D22 = 03⇥3.

We obtain the controller that minimizes the SDP relaxation
of the k-sparse H1 norm using the convex optimization
procedure described in Sec. IV.A. We then compute the true
k-sparse H1 norm via exhaustive search – see Table I for
the result of these numerical experiments.

Since our synthesis method is based on the SDP relaxation
of the k-sparse H1 norm, the resulting controller may not
be the true optimal controller. However, as we can see, the
controllers computed with respect to relaxations of the k-
sparse H1 norm exhibit better performance with respect to
k disturbances than the general H1 optimal controller. In
particular, if only k disturbances are allowed to coordinate
their attack, then we see that if a controller is designed
to mitigate the worst case effect of a larger number of
disturbances, this can in fact lead to a degradation in the
closed loop k-spare H1 norm of the system.

VI. CONCLUSION

Motivated by robustness properties of large-scale systems,
we defined the k-sparse H1 norm and the k-sparse minimal
gain of a system. As computing these objects involves
solving a combinatorial optimization problem, we described
semidefinite programming relaxations to these combinatorial
optimization problems, as well as a simple rounding heuristic
that provides a feasible, but possibility sub-optimal solution.
We also developed a centralized controller synthesis method
based on the KYP-like dual of our semidefinite relaxation,
and confirmed its effectiveness through a numerical example.
In future work, we aim to extend our synthesis methods to
nested distributed systems [25], and to develop specialized
solvers that exploit structure in the state-space parameters
such that our methods can scale to systems with hundreds
to thousands of states.
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