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Abstract— This paper poses and solves the localized linear
quadratic Gaussian (LLQG) optimal control problem. In par-
ticular, we show that for large-scale localizable systems, that
is to say systems for which the closed loop effect of each
disturbance can be contained to within a local neighborhood
despite communication delays between sub-controllers, the
synthesis and implementation of a LLQG optimal controller
can be performed in a scalable way. We combine our prior
results on the state-feedback version of this problem with the
alternating direction method of multipliers (ADMM) algorithm
to formulate a synthesis algorithm that can be solved in a
distributed fashion, with each subsystem solving a problem of
constant dimension independent of the global problem size.
The result is a controller synthesis and implementation scheme
that can scale to systems of arbitrary dimension, subject to
certain conditions on the communication, actuation and sensing
schemes holding. Simulations show that for some systems, the
LLQG optimal controller can achieve transient performance
similar to that of a centralized H2 optimal controller. We
also demonstrate our algorithm on a system with about 104

states composed of heterogeneous and dynamically coupled
subsystems – here the distributed and centralized optimal
controllers cannot be computed.

I. INTRODUCTION

Large-scale networked systems permeate both modern life
and academic research, with familiar examples including the
Internet, smart grid, wireless sensor networks, and biological
networks in science and medicine. The scale of these systems
introduces new challenge when designing a controller: the
computational complexity of synthesizing and implementing
a controller must be traded off against the closed loop perfor-
mance that it achieves. For example, although a centralized
optimal controller achieves a globally optimal closed loop,
it can be difficult to compute for large-scale systems, and
impossible to implement due to communication constraints
between sensors, actuators and sub-controllers.

In attempt to address some of these issues, the field
of distributed (decentralized) optimal control has emerged,
and allows for realistic communication constraints amongst
local sensors, actuators, and sub-controllers to be explicitly
incorporated into the design process. Specifically, a dis-
tributed optimal control problem is commonly formulated by
imposing an information sharing constraint on the controller
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– the tractability of the resulting problem depends on the
relationship between the information sharing constraint and
the plant, and certain problems can indeed be NP-hard [1],
[2]. It has been shown that the distributed optimal control
problem admits a convex reformulation in the Youla domain
if [3] and only if [4] the information sharing constraint
is quadratically invariant (QI) with respect to the plant.
With the identification of quadratic invariance as a means
of convexifying the distributed optimal control problem,
tractable solutions for various types of distributed constraints
and objectives have been developed [5]–[10].

Although the distributed optimal control problem with
a QI information sharing constraint is computationally
tractable (i.e., convex), both the controller synthesis and
implementation scale with the dimension of the full system,
and thus are not practical for large systems. In fact, for any
plant with a strongly connected topology, an information
sharing constraint is QI if and only if the local measurement
taken by each sensor is shared among all sub-controllers
in the distributed system (this follows from the conditions
identified in [11]). This then implies that when a plant is
strongly connected, an optimal controller K (the transfer
function from measurements y to control actions u) can
only be solved for in a convex manner via the QI Youla
parameterization if K is dense, i.e., if each sub-controller
needs to collect the entire measurement y of the system
to compute its control action. This lack of scalability has
not gone unnoticed by the community, and techniques based
on regularization [12], convex approximation [13], [14], and
spatial truncation [15] have been used in hopes of finding
a near optimal distributed static feedback controller that is
scalable to implement. These methods have been successful
in extending the size of systems for which a distributed
controller can be computed, but there is still a limit to their
scalability as they often rely on an underlying centralized
synthesis procedure. Further, it is not clear if these meth-
ods can be extended to compute a dynamic controller that
incorporates information sharing constraints.

In previous work [16]–[18], we introduced the notion of a
localizable system. These are systems for which a distributed
controller exists that achieves a closed loop response in
which the effect of each disturbance is limited to a local
neighborhood (we make this precise in §II). We showed that
if a system is localizable, then a controller achieving the
desired localized closed loop response can be implemented
in a scalable way if we allow the communication of both
measurements and controller internal states between sub-
controllers. In particular, this means that each sub-controller
i only needs to collect a subset of the measurements and



controller internal states to compute its control action. In
addition to a scalable, or localized, implementation, we show
that if a system can be localized via state-feedback controller,
then the resulting localized linear quadratic regulator (LLQR)
optimal controller can be synthesized in a scalable, parallel
and localized way [17]. Specifically, we show that the LLQR
optimal control problem can be decomposed into several
subproblems that can be solved in parallel, each defined
in terms of a local subset of the controller and system and
admitting an analytic solution. However, this technique does
not extend to the output feedback setting [18] because there
is an additional constraint that introduces a coupling in the
optimization problem.

In this paper, we pose and solve the localized linear
quadratic Gaussian (LLQG) problem, i.e., we solve the
output feedback localized optimal control problem with an
H2 (LQG) performance metric. We show that by combining
the alternating direction method of multipliers (ADMM) with
the LLQR decomposition technique, we can synthesize an
LLQG optimal controller in a scalable, parallel and localized
way. Thus the LLQG controller can be both synthesized and
implemented in a scalable way, with the complexity of each
task independent of the global system size.

The rest of this paper is structured as follows. In §II
we introduce the system model, recall the QI distributed
optimal control formulation and comment on its scalability
limitations, and recall relevant results from our prior work
on localized optimal control. In §III, we recall the LLQR
decomposition of the state-feedback problem, as it is a
key component of our proposed computational scheme. We
then use the LLQR decomposition in combination with
the ADMM algorithm to show how the LLQG optimal
control problem can be solved in a scalable way in §IV.
We end with §V, where we show the effectiveness of our
method by synthesizing the LLQG optimal controller for a
system with ∼ 104 states composed of dynamically coupled
heterogeneous subsystems.

Notation: We use lower and upper case Latin letters such
as x and M to denote vectors and matrices, respectively,
and lower and upper case boldface Latin letters such as x
and M to denote signals and transfer matrices, respectively.
We use calligraphic letters such as S to denote subspaces.
We use RH∞ to denote the space of stable, proper real-
rational transfer matrices, and FT to denote the space of
finite impulse response transfer matrices with horizon T , i.e.,
FT := {G ∈ RH∞ | ,G =

∑T
t=0

1
ztGt}.

II. PROBLEM FORMULATION

We begin by introducing the interconnected system model
that we consider in this paper. We then explain why dis-
tributed optimal controller synthesis techniques based on the
quadratic invariance (QI) framework [3] do not scale to large
systems. We end this section by recalling the results of [18]
in which we defined the localized optimal control framework.

A. Interconnected System Model
We consider distributed systems described by linear time-

invariant (LTI) dynamics and composed of a collection of

subsystems that interact with each other according to a
network topology specified by the interaction graph G =
(V, E). Here V = {1, . . . , n} denotes the set of subsystems:
to each subsystem i we associate a state vector xi, control
action ui, and measurement yi; and E ⊆ V × V encodes the
interaction between these subsystems: an edge (i, j) is in E
if and only if the state xj of subsystem j directly affects the
state xi of subsystem i. Defining the (incoming) neighbor
set Ni of subsystem i to be Ni = {j|(i, j) ∈ E}, may then
write the dynamics of subsystem i as

xi[k + 1] = Aiixi[k] +
∑
j∈Ni

Aijxj [k] +Biiui[k] + δxi
[k]

yi[k] = Ciixi[k] + δyi [k],
(1)

where Aii, Aij , Bii, Cii are matrices of compatible dimen-
sions, and δxi

and δyi denote state and measurement pertur-
bations, respectively.

B. Quadratic Invariance and Scalability

Designing controllers for interconnected systems (1) can
be very challenging for two distinct reasons: (i) in general,
the optimal control problem may be intractable [1], and
(ii) even if the problem is tractable, the resulting synthesis
problem may not scale gracefully to large systems. Although
recent work [3] has been very successful in identifying
tractable (i.e., convex) classes of such problems, as described
in the introduction, there has been less focus on scalability.
Before describing our scalable controller synthesis frame-
work, we briefly recall the QI optimal control framework,
and show why scalability issues may arise when dealing with
large systems. We begin by constructing the global plant

x[k + 1] = Ax[k] +B2u[k] + δx[k]
z[k] = C1x[k] +D12u[k], y[k] = C2x[k] + δy[k]

(2)
where x, u, y, δx, and δy are stacked vectors of the subsys-
tem states, controls, measurements, and process and sensor
disturbances, respectively, and z is a controlled output. The
global plant model (A,B2, C2) is constructed such that the
dynamics (2) are compatible with those specified in (1). If we
let the disturbances be given by δx = B1w and δy = D21w
for some matrices B1 and D12, and a disturbance vector w,
then equation (2) can be written in transfer function form as

P =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
P11 P12

P21 P22

]
where Pij = Ci(zI −A)−1Bj +Dij .

We can then formulate the distributed optimal control
problem as

minimize
K

‖P11 + P12K(I −P22K)−1P21‖
subject to K internally stabilizes P, K ∈ C ∩ RH∞

(3)
where the subspace constraint K ∈ C enforces information
sharing constraints between the sub-controllers. It was shown
in [3] that if the constraint set C is quadratically invariant
with respect to P22 then the optimal control problem admits



a convex reformulation. Loosely speaking, this condition
requires that sub-controllers be able to share information
with each other at least as quickly as their control actions
propagate through the plant [11].

Assume that for a given constraint C, the optimal controller
K can be computed: the implementation complexity of K is
then determined by the densest row Ki of K. Specifically, if
we consider the control action taken at subsystem i, which is
specified by ui = Kiy, then if Ki is completely dense then
subsystem i must collect measurements from every other
subsystem j ∈ V . As the number of subsystems grows large,
this then leads to a very complex controller implementation.
A natural solution to this problem is to impose sparsity
constraints on the controller K such that each row only has a
small number of nonzero terms – in this way each subsystem
i only needs to collect a small number of measurements to
compute its control action. Unfortunately, this naive approach
fails if the dynamics of P22 are strongly connected because
in that case, any sparse constraint set C is not QI with
respect to P22. Although recent methods based on convex
relaxations [13] can be used to solve certain cases of the non-
convex optimal control problem (3) with sparse constraint
set C, the underlying synthesis optimization problem is itself
still large-scale and does not admit a scalable reformulation.
The need to address scalability, both in the synthesis and
implementation of a controller, is the driving motivation
behind the localized optimal control framework, which we
recall in the next subsection.

C. Localized Distributed Control

Our previous work on localized optimal control [16]–[18]
is built on the observation that the controller need not be
implemented as a map K from observations y to control ac-
tions u, but rather admits a parameterization in terms of four
closed loop transfer matrices (R,M,N,L) that define the
closed loop maps from δx and δy to the state x and control
action u (we make this precise in what follows). We show
that by working directly with these transfer matrices, suitably
structured controllers and controller synthesis problems can
be defined that address the issues of scalable synthesis and
implementation described above. In [18] we show that for a
system described by (2), there exists a controller such that
the closed loop transfer matrices (R,M,N,L) satisfy[

x
u

]
=

[
R N
M L

] [
δx
δy

]
(4)

if and only if (zR, zM, zN,L) ∈ RH∞ and

[
zI −A −B2

] [R N
M L

]
=
[
I 0

]
(5a)[

R N
M L

] [
zI −A
−C2

]
=

[
I
0

]
. (5b)

The localized distributed optimal control problem is then
posed as

minimize
{R,M,N,L}

‖
[
C1 D12

] [R N
M L

] [
B1

D21

]
‖ (6a)

subject to (5a) and (5b),
[
zR zN
zM L

]
∈ C ∩ L ∩ FT (6b)

where C is a subspace encoding the information sharing
constraints of the distributed controller, L is a localized
constraint and FT restricts the optimization variables to
have finite impulse responses of horizon T . Whereas the
first subspace C is defined by the communication network
interconnecting the sub-controllers, the subspaces L and FT
are design parameters to be specified by the control designer.
Before delving into what these subspaces encode and how
to design them, we recall the following theorem from [18].

Theorem 1: Suppose that a set of transfer matrices
(R,M,N,L) satisfy constraints (5a) and (5b). Then a
controller yielding the closed loop response (4) can be
implemented as

β = 1
z R̃

+β + 1
z Ñy, u = M̃β + Ly (7)

where R̃+ = z(I−zR), Ñ = −zN, M̃ = zM, L are stable
proper transfer matrices and β is the controller’s internal
state. Further, the implementation (7) is internally stabilizing.

Remark 1: Whereas the QI framework requires a transfor-
mation between the optimization variable and the controller
(in particular the Youla parameter Q must be mapped back
to the controller K via a linear fractional transform), we
directly implement the controller in terms of the optimization
variables (R,M,N,L). In doing so, we are able to avoid the
issues of non-convexity that are present in the QI framework
– however, it is possible to impose constraints that lead to an
infeasible problem, and thus our results are still consistent
with established results on the hardness of distributed control
subject to non-classical information patterns [1], [2].

Theorem 1 thus shows how the sparsity of the closed loop
transfer matrices (R,M,N,L) translates into the implemen-
tation complexity of a controller as in (7). If the rows of these
transfer matrices are suitably sparse, then each sub-controller
only needs to collect a small number of measurements and
controller internal states to compute its control law. The
localized constraint L is the mechanism that we use to
impose this sparsity.

We begin by defining the notion of the d-outgoing and
incoming sets at a subsystem j. To do so, we let the distance
dist (j → i) from subsystem j to subsystem i be given by
the length of the shortest path from node j to node i in the
graph G. We say that a set C of subsystems is of size d
if dist (i→ j) ≤ d for all i, j ∈ C . We then define the d-
outgoing set of subsystem j as Outj(d) := {i|dist(j → i) ≤
d}, and the d-incoming set of subsystem j as Inj(d) :=
{i|dist(i→ j) ≤ d} – by definition, both of these sets are of
size d. Our approach to making the controller synthesis task
specified in optimization problem (6) scalable is to confine,
or localize the effects of the process and sensor disturbances
to a d-outgoing set at each subsystem j, for a size d much
smaller than that of V . As we make precise in the sequel, this



implies that each sub-controller j only needs to collect data
from subsystems i contained in its d-incoming set Inj(d).

Example 1: For a system (1) with interaction graph il-
lustrated in Fig. 1, the 2-incoming and 2-outgoing sets
of subsystem 5 are given by In5(2) = {2, 3, 4, 5} and
Out5(2) = {5, 6, 7, 8, 9, 10}, respectively.

In5(2)

Out5(2)

Fig. 1: Illustration of the 2-incoming and 2-outgoing sets of subsystem 5.

With this approach in mind, we say that the transfer
matrix R mapping the state disturbance δx to the state x,
as defined in (4), is d-localized if its impulse response can
be appropriately covered by d-outgoing sets. In particular, if
we let Rij denote the transfer function from the perturbation
δxj

at sub-system j to the state xi at sub-system i, then the
map R is d-localized if and only if for every subsystem j,
Rij = 0 for all i 6∈ Outj(d). In words, this says that the
transfer matrix R is d-localized if and only if the effect of
each disturbance is contained, or localized, to within a region
of size d. This definition can be extended to the remaining
transfer matrices N, M, and L of (4) in a natural way.
The closed loop response (4) of the system is said to be
d-localized if its constituent components (R,N,M,L) are
as well. Finally, the subspace L in (6b) imposes a d-localized
constraint if it constrains its elements to be d-localized closed
loop responses.

With these definitions and results in hand, our approach
to synthesizing a controller that is scalable to implement
is straightforward: we choose the subspace L to be a d-
localized constraint and select a horizon T for the FIR
subspace FT . Whereas the first constraint ensures that the
transfer matrices solving optimization problem (6) are d-
localized, the second constraint is simply imposed to make
the optimization problem finite dimensional. The resulting
optimization problem (6) is easily seen to be convex as the
constraints are all affine: if it is feasible, then the resulting
closed loop transfer matrices (R,M,N,L) can be used to
implement a controller as specified by Theorem 1 (note
that the modified transfer matrices (R̃, M̃, Ñ) are also d-
localized). Further, since the effect of each disturbance is
localized to a region of size d (i.e., since the closed loop
response is d-localized), each sub-controller only needs to
collect data from other subsystems that are at most a distance
d away. In particular, this means that the row sparsity of the
transfer matrices (R,M,N,L) is defined by the d-incoming
sets of the system, and thus the control action ui and internal
state βi of sub-controller i can be computed by collecting
the data (yj ,βj) from subsystems j in the d-incoming set
Ini(d). This discussion shows that a controller synthesized
via optimization problem (6) and implemented according
to Theorem 1 is scalable to implement, as the amount of

information collected at a given subsystem is specified by
the d-localized constraint L, and hence is independent of the
number of subsystems n.

Before proceeding, we note that although optimization
problem (6) is convex for any affine constraint set L, it
is not necessarily feasible. This is because the subsystems
are dynamically coupled to each other (as per (1)), and
hence it may not always be possible to localize the effect
of a disturbance affecting subsystem j to a pre-specified d-
outgoing set Outj(d). Intuitively, optimization problem (6)
is feasible when the communication constraint C is such that
information about a disturbance can be transmitted faster
than the disturbance propagates through the plant. In this
way, the necessary sub-controllers can take action before a
disturbance perturbs their subsystem and stop it from prop-
agating to the rest of the system. Implicit in this argument
are the assumptions that information can be shared quickly
between sub-controllers, and that sensors and actuators are
strategically placed (these assumptions are discussed in detail
in [17]–[19]).

Based on this intuition, we provide simple rules for how
to select the size d of the localized subspace constraint L,
the horizon T of the FIR subspace constraint FT , as well
as a principled approach to designing the actuation scheme
of the system (i.e., the matrix B2) in our companion paper
[19]. For the remainder of the paper, we assume that the
horizon T has been set, that the subspace constraint L is d-
localized, and that the communication, actuation and sensing
architecture of the system is such that optimization problem
(6) is feasible.

D. Problem Statement

We have thus far argued that localized controllers are scal-
able to implement – what remains to be shown is that they are
also scalable to synthesize. The goal of this paper is to show
that optimization problem (6) can be solved in a scalable
manner when the objective function (6a) is taken to be the
H2 (LQG) norm. Our approach is to exploit the structure of
the d-localized subspace constraint L and the interconnection
graph underlying the dynamics (2) to decompose the large-
scale global optimization problem (6) into easily solved
sub-problems of moderate size. In what follows we present
an ADMM based algorithm for solving problem (6) that
requires each subsystem j to solve a sub-problem defined
only by the state-space parameters of subsystems contained
in its d-outgoing and d-incoming sets Outj(d) and Inj(d),
respectively. In addition, the computation performed at each
subsystem can be done parallel: thus the computational
complexity, memory usage and parallel computation time
needed at each subsystem are only a function of the size
of the d-incoming and d-outgoing sets of the system.

III. LLQR DECOMPOSITION

In this section, we recall the LLQR decomposition tech-
nique [17], which is a scalable algorithm used for solving
the state-feedback version of the localized optimal control
problem (6).



A. Column-wise Decomposition

Assume that the plant (2) corresponds to a state-feedback
model, i.e., that C2 = I (full sensing) and D21 = 0 (no
sensor noise), and that B1 = I (uncorrelated process noise).
The LLQR problem [17] then follows as a special case of
optimization problem (6), and is given by

minimize
{R,M}

‖
[
C1 D12

] [R
M

]
‖2H2

subject to
[
zI −A −B2

] [R
M

]
= I[

zR> zM>
]> ∈ C ∩ L ∩ FT .

(8)

As shown in [17], optimization problem (8) admits a column-
wise decomposition. This decomposition follows directly
from the LTI property of the system and the decomposability
of the LQR cost for uncorrelated process noise.1 Specifically,
the objective function of (8) can be written as

n∑
j=1

||
[
C1 D12

] [Rj

Mj

]
||2H2

(9)

where Rj and Mj denote the jth block column of R and
M, which correspond to the closed loop maps from the
process noise δxj at subsystem j to the global state x and
control action u, respectively. Recall that if L is a d-localized
constraint, then the ith block-row of this block-column is
nonzero only if i ∈ Outj(d), i.e., if subsystem i is in the
d-outgoing set of subsystem j. Using a similar argument,
we can also decompose the constraints of (8) in a block-
column wise manner. Thus, if we let Sj denote the constraint
imposed on block-column j by a subspace S, we can solve
the collection of subproblems

minimize
{Rj ,Mj}

||
[
C1 D12

] [Rj

Mj

]
||2H2

subject to
[
zI −A −B2

] [R
M

]
j

= [I]j[
zR>j zM>j

]> ∈ Cj ∩ Lj ∩ FT .
(10)

for j = 1, . . . , n instead of solving the global optimization
problem (8). We already alluded to the benefit of this decom-
position above: for a d-localized constraint L, the nonzero
block-rows of each Rj and Mj is at most of size d as
specified by Outj(d), the d-outgoing set at subsystem j, and
thus we can greatly reduce the number of the optimization
variables in problem (10) by discarding those constrained to
be zero. Further, because of the decomposability (9) of the
H2 norm and the assumption of uncorrelated process noise,
we can independently (and hence in parallel) optimize the
closed loop response to each local disturbance δxj

using the
localized subproblems (10), even when their outgoing sets
Outj(d) overlap.

In order to specify the subproblems (10) in terms of their
reduced optimization variables (which will be needed to
specify our ADMM based algorithm in the next section), we
introduce some further notation. For a d-localized constraint

1These results extend in a natural way to when B1 is a diagonal or
block-diagonal matrix.

L, let Roj,d and Moj,d be the restriction of the maps Rj

and Mj to their block-rows i satisfying i ∈ Outj(d + 1),2

respectively. We can then define the local plant model
(Aoj,d , B2oj,d) by selecting the sub-matrices of (A,B2)
corresponding to the block-columns and block-rows specified
by Outj(d+1), i.e., we only need to consider the state-space
parameters of the subsystems contained within Outj(d+ 1),
the (d+ 1)-outgoing region of subsystem j. Finally let Ioj,d
be the corresponding submatrix of the identity. Each LLQR
sub-problem (10) can then be written as

minimize
{Roj,d

,Moj,d
}
‖
[
C1oj,d D12oj,d

] [Roj,d

Moj,d

]
‖2H2

s.t.
[
zI −Aoj,d −B2oj,d

] [Roj,d

Moj,d

]
= Ioj,d[

zR>oj,d zM>oj,d
]> ∈ Coj,d ∩ Loj,d ∩ FT .

(11)

where we use Soj,d to denote the projection of a subspace
Sj onto the nonzero block-rows specified by Outj(d).

IV. LOCALIZED LQG SYNTHESIS

The LLQR decomposition technique cannot be applied
to optimization problem (6) for plants (2) corresponding to
output feedback problems. This is because the constraints
(5a) and (5b) admit incompatible decompositions: constraint
(5a) can be decomposed block-column wise, whereas con-
straint (5b) can be decomposed block-row wise, introducing
a coupling between all optimization variables. The ADMM
has proven very useful in “breaking” such coupling between
optimization variables, allowing for large-scale problems to
be decomposed and solved efficiently. Our approach to de-
veloping a scalable solution to the localized optimal control
problem (6) is to combine the ADMM technique with the
LLQR decomposition introduced in the previous section.

To reduce notational clutter, we assume that B1 =
[
I 0

]
and D21 =

[
0 σyI

]
, where σy is the relative magnitude

between process disturbance and sensor disturbance.3Using
these values for B1 and D21, and the H2 norm in the
localized optimal control problem (6) yields the localized
LQG (LLQG) optimal control problem

minimize
{R,M,N,L}

‖
[
C1 D12

] [R σyN
M σyL

]
‖2H2

(12a)

subject to (5a) and (5b) (12b)[
zR zN
zM L

]
∈ C ∩ L ∩ FT . (12c)

We continue to assume that the subspace L is a d-localized
constraint, ensuring that the resulting optimal controller
admits a scalable implementation, as described in §II-C. We
now make a series of observations that motivate the use
of the ADMM algorithm to solve the LLQG problem (12).
First, notice that if we remove constraint (5b) from problem

2If we only considered subsystems in the d-outgoing set, the localized
constraint L would have no effect on the synthesized controllers, thus we
extend the region by 1 to incorporate “boundary” subsystems that must have
a zero response to the disturbance at subsystem j.

3The methods in this section extend in a natural way to diagonal and
block-diagonal matrices B1 and D21.



(12), then the resulting optimization problem admits a block
column-wise LLQR decomposition, which as described in
the previous section allows for the global problem to be
decomposed into subproblems of size defined by that of the
d-outgoing sets of the subsystems. Through a dual argument,
we can show that verifying the feasibility of constraint (5b)
can done block-row at a time, resulting in a feasibility
problem that admits a block row-wise LLQR decomposition,
once again allowing for the global problem to be decomposed
into easily solved subproblems. In order to exploit the de-
composition properties of each of these modified problems,
we leverage the standard ADMM technique of shifting the
coupling from the difficult to enforce constraints (5a) and
(5b) to a simple equality constraint through the introduction
of a redundant variable: we make this approach precise in
what follows. We use

Ψi =

[
Ri Ni

Mi Li

]
to denote the ith copy of the closed loop transfer matrix that
we are solving for. Following [20], we define the extended-
real-value functions f(Ψ1) and g(Ψ2) as

f(Ψ1) = {(12a) if (5a), (12c), ∞ otherwise}
g(Ψ2) = {0 if (5b), (12c), ∞ otherwise}. (13)

Using these definitions, we can rewrite the LLQG optimiza-
tion problem (12) as

minimize
{Ψ1,Ψ2}

f(Ψ1) + g(Ψ2) subject to Ψ1 = Ψ2. (14)

The form of optimization problem (14) is precisely that
needed by the ADMM approach [20], and can be solved
via the iterations

Ψk+1
1 = argmin

Ψ1

(
f(Ψ1) +

ρ

2
||Ψ1 −Ψk

2 + Λk||2H2

)
(15a)

Ψk+1
2 = argmin

Ψ2

(
g(Ψ2) +

ρ

2
||Ψ2 −Ψk+1

1 − Λk||2H2

)
(15b)

Λk+1 = Λk + Ψk+1
1 −Ψk+1

2 . (15c)

Recall that each closed loop response Ψi is constrained to
lie in the FIR subspace FT , and hence is a finite dimensional
variable: it follows that each of the problems specified
by the ADMM algorithm (15) can be formulated as finite
dimensional optimization problems by associating the FIR
transfer matrices with their matrix representations. We now
focus on the problem specifying the Ψk

1 iterates, which can
be written as

minimize
{R1,M1,N1,L1}

‖
[
C1 D12

] [R1

M1

]
‖2H2

+σ2
y‖
[
C1 D12

] [N1

L1

]
‖2H2

+ ρ
2 ||Ψ1 −Ψk

2 + Λk||2H2

subject to
[
zI −A −B2

] [R1

M1

]
= I[

zI −A −B2

] [N1

L1

]
= 0[

zR1 zN1

zM1 L1

]
∈ C ∩ L ∩ FT .

(16)

From the form of this problem, it is apparent that an
analogous argument to that presented in §III applies and
that a block column-wise LLQR decomposition can be
applied to the objective function and constraints, allowing for
subproblems of scale d to be solved. Similarly, subproblem
(15b) admits a block row-wise LLQR decomposition, and
the Lagrange multiplier update equation (15c) decomposes
element-wise. Thus if the ADMM weight ρ is shared between
subsystems prior to the synthesis procedure, the optimization
problems specifying the ADMM algorithm (15) decompose
into subproblems specified by the d-outgoing and d-incoming
sets of the system.

Next we show that the problems specifying the iterates
Ψk
i can be solved in closed form allowing for the update

equations (15a) and (15b) to be implemented via matrix
multiplication. We end the section with a discussion of
conditions guaranteeing the convergence of the iterates Ψk

i

to the optimal solution to the LLQG problem (12).
Remark 2: The ADMM approach specified in (15) can

be used with other objective functions that admit a block
column-wise decomposition and/or block row-wise decom-
position. An interesting special case is that we can solve
problem (12) for arbitrary B1 and D21 if [C1 D12] is diago-
nal – in particular, this means that an LLQG controller can be
synthesized in a scalable way using our proposed algorithm if
the process and sensor noise are globally correlated, so long
as the subsystem’s performance objectives are decoupled.

A. Analytic Solution

We now focus on optimization problem (16), which spec-
ifies the iterates Ψk

1 . Following the LLQR method described
in §III, we perform a block-column-wise decomposition of
the objective and constraints of (16), and exploit the d-
localized structure of the system to reduce the dimensionality
of each resulting subproblem. Specifically, for each distur-
bance δxj

or δyj at subsystem j, we solve an optimization
of the same form as (16) except with all decision variables,
state-space parameters and constraints restricted to the d-
outgoing set of subsystem j, oj,d := Outj(d). The result
is an optimization problem similar to (11) with solution
{R1

oj,d
,M1

oj,d
,N1

oj,d
,L1

oj,d
}. We also note that optimization

problem (11) and the dimensionality reduced version of
optimization problem (16) are least-squares problems subject
to affine constraints. Consequently, the optimal solution is
specified as an affine function of the problem data

(
Ψk

2

)
oj,d

and Λkoj,d , and can be written

(Ψ1)
k+1
oj,d

= F aoj,d

((
Ψk

2

)
oj,d

,Λkoj,d

)
+ F boj,d , (17)

for a suitable linear map F aoj,d and affine term F boj,d which
can be computed using standard methods by exploiting
the fact that ‖G‖2F = ‖vec(G)‖22. In particular, the terms
(F aoj,d , F

b
oj,d

) only need to be computed once, after which
the updates to the iterates Ψk

1 can be performed via equation
(17). Note that this procedure can be performed in parallel
at each subsystem j.

An analogous argument allows us to solve the Ψk
2 iter-

ate update equation (15b) by applying a block row-wise



decomposition. For each subsystem j, let inj,d = Inj(d)
and define (δinj,d

) to be the collection of process and sensor
disturbances that affect the d-incoming set of subsystem
j. The decomposition and dimensionality reduction of this
subproblem then proceeds in a manner dual to that of (16)
using a block row-wise decomposition and a reduction to
subproblems of dimension specified by the d-incoming sets
of this system. Once again, the resulting dimensionality
reduced problems are least-squares problems subject to affine
constraints, and their optimal solutions are affine functions of
the problem data

(
Ψk+1

1

)
inj,d

and Λkinj,d
, and can be written

(Ψ2)
k+1
oj,d

= Eainj,d

((
Ψk+1

1

)
inj,d

,Λkinj,d

)
+ Ebinj,d

, (18)

for a suitable linear map Eainj,d
and affine term Ebinj,d

. This
procedure can also be done in parallel at each subsystem j.

Thus using this approach to solving the iterate updates
(15a) and (15b), the LLQG optimization problem (12) can be
solved nearly as quickly as the state-feedback problem, as the
update equations (17) and (18) require first solving a least-
squares problem defined on the d-incoming and d-outgoing
sets of the system and then using matrix multiplication.
Once the optimal controller is solved for using the method
described above, it can then be implemented according to
(7): as we argued in §II, imposing that the constituent
transfer matrices (R,M,N,L) be d-localized implies that
the controller admits a localized implementation. Thus we
have met our goal of designing a controller that can be
both synthesized and implemented in a localized, and hence
scalable, manner.

An added benefit of the localized optimal control frame-
work is the ability to perform real-time re-synthesis of
optimal controllers. In particular, suppose that the dynamics
(1) describing the dynamics of a collection C of subsections
change – in order to suitably update the LLQG optimal
controller, only the components of the closed loop transfer
matrices (R,M,N,L) corresponding to the response of
subsystems j satisfying Inj(d)∩C 6= ∅ or Outj(d)∩C 6= ∅
need to be updated according to equations (17) and (18).

Convergence and Stopping Criteria: Assume that the
optimization problem (14) is feasible, and let Ψ∗ be an
optimal solution. Further assume that the matrix [C1 D12]
has full column rank, and [B1;D21] has full row rank. In this
case, the objective function is strongly convex with respect
to Ψ, and hence any optimal solution Ψ∗ is the unique
optimal solution. As the extended functions f and g specified
in (13) are closed, proper, and convex we have that strong
duality holds and that optimization problem (14) satisfies the
convergence conditions state in [20]. From [20], the objective
of (14) converges to its optimal value. As the objective
function is a continuous function of Ψ and the optimal
solution Ψ∗ is unique it follows that the primal variable
iterates converge to Ψ∗, i.e., Ψk

1 → Ψ∗ and Ψk
2 → Ψ∗. Note

that the rank condition on the objective function matrices is
only a sufficient condition for primal variable convergence,
and we believe that less restrictive conditions can be derived.
We refer the reader to [20] for how to select stopping criteria

for algorithm (15) – this stopping criteria can be further
used as a scalable method of verifying the feasibility of
optimization problem (14) for a specific choice of localized
subspace constraint L and FIR horizon T . As mentioned
previously, we defer a discussion of how to choose these
parameters to our companion paper [19].

V. SIMULATIONS

Comparison to Traditional Controllers: We begin with a
20 × 20 mesh topology, which encodes the interconnection
between subsystems, and then drop each edge with a proba-
bility of 0.2. The resulting interconnection topology is shown
in Fig. 2(a) – we assume that all edges are undirected. Note
that in general the network may not be strongly connected,
but this does not affect the synthesis task. The dynamic
interaction between two neighboring sub-systems is shown
in Fig. 2(b), in which state xi,1 can affect state xj,2 if i and
j are neighbors. This model is inspired from the second-
order dynamics of a power network or mechanical system.
Specifically, consider the second-order equation

miθ̈i + diθ̇i = −
∑
j∈Ni

kij(θi − θj) + wi + ui

for some scalar state θi. We let xi := [θi θ̇i]
>, allow each

sub-controller to measure θi, and use eA∆t ≈ I + A∆t
to obtain a discrete-time plant with interactions between
neighboring subsystems described by Fig. 2(b).

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(a) Interconnected topology (b) Interaction between neigh-
boring sub-systems

Fig. 2: Simulation example interaction graph.

The diagonal and off-diagonal entries of A are drawn
from a uniform distribution over [0.4, 0.8] and [−0.4,−0.2]∪
[0.2, 0.4], respectively. The open loop plant is unstable, with
the spectral radius of A given by 1.1814 in the example that
we present. For the objective, we assign equal penalty to the
state deviation and control effort, and the magnitudes of the
process and sensor disturbances are assumed to be the same.

We construct the localized constraint L by imposing that
the effect of each process disturbance δxj

be limited to the
2-outgoing set Outj(2), and that the effect of each sensor
disturbance δyj be limited to the 3-outgoing set Outj(3).
This implies that each subsystem j needs to collect mea-
surements yi and controller states βi from sub-controllers i
in Inj(3) to compute its control action, and use the restricted
plant model specified by Inj(3) ∪ Outj(3) to solve and
implement the update equations (17) and (18). We assume
that the communication constraint C is such that at time
t, controller i can receive (yj [τ ], βj [τ ]) for all τ ≤ t − k
if dist (j → i) = k. The interaction between subsystems



Proper H2 LLQG S.P. H2 S.P. LLQG
H2 norm 45.35 48.79 49.27 51.00
Comp.Time (s) 134.26 55.41 138.49 55.67

TABLE I: H2 Norm and Total Computation Time

illustrated in Fig. 2(b) implies that it takes two time steps for
a disturbance at subsystem j to propagate to its neighboring
subsystems, and hence the communication speed is twice as
fast as propagation speed of disturbances through the plant.
We set the FIR horizon to T = 10 for all closed loop transfer
matrices: as we show below, this choice leads to near-optimal
performance relative to the centralized optimal controller.

We compare the performance of the LLQG controller
to both proper and strictly proper H2 centralized optimal
controllers. In this example, the dimension of the state,
control action, and measurement vectors are 800, 400, and
400, respectively. Due to the size of the system, it is impos-
sible to compute a distributed optimal controller using the
methods described in [6], but we note that the performance
of this distributed controller will be no better than that of the
centralized controllers to which we compare our scheme.

The H2 norm and the total computation time for these
control schemes are summarized in Table I. As can be
seen, the LLQG controller achieves a closed loop H2 norm
that is 7.6% and 3.5% worse than that achieved by the
proper and strictly proper centralized optimal controller,
respectively. Given that the open-loop plant is unstable, this
degradation in performance is quite small, especially given
the computational advantages of using the LLQG scheme:
the LLQG controller synthesis procedure is completed in
approximately 40% of the time needed to compute the
centralized controller. It should be noted that we do not
utilize any parallel computation to calculate the computation
times in Table I. In practice, update equations (17) and (18)
can be run in parallel: thus the LLQG controller can be
synthesized nearly instantaneously.

To further illustrate the advantages of the LLQG opti-
mal controller, we compare the strictly proper LLQG and
H2 centralized optimal controllers in terms of closed loop
performance, controller synthesis complexity, and controller
implementation complexity in Table II. It can be seen that
the LLQG optimal controller is vastly preferable in all
aspects, except for a slight degradation in the closed-loop
performance. This degradation is mainly due to the length
of the FIR horizon T . In particular, the localized constraint
L in this example has almost no effect on the closed loop
performance. If we increase the FIR horizon T from 10 to
20, then the performance degradation decreases from 3.5%
to only 0.2%. This however does come at the cost of a larger
computation time which increases to 231.78 seconds (note
that this time is for a serial computation, and can be reduced
if the iterate updates are implemented in parallel).

Large Scale Example: We now allow the size of the
problem to vary and compare the computation time needed
to synthesize a centralized, distributed, and LLQG optimal
controller. The distributed optimal controller is computed
using the methods described in [6], in which we assume the
same communication constraints C as LLQG. The empirical

Centralized Localized
Affected region Global Outj(3)

Closed Loop Affected time Long T = 10 steps
Normalized H2 1 1.035

Comp. complexity O(n3) O(n)
Comp. time (s) 138.49 55.67

Synthesis Time per node (s) 138.49 0.07
Plant model Global Outj(3)∪Inj(3)
Redesign Offline Real-time

Implement. Comm. Speed ∞ 2x
Comm. Range Global Inj(3)

TABLE II: Comparison Between Centralized and Localized Control

relationship obtained between computation time and problem
size for the different control schemes is illustrated in Fig. 3.
For the LLQG controller, we plot both the total computation
time and the average computation time per subsystem. As
can be seen in Fig. 3, the computation time needed for the
distributed controller grows rapidly when the size of problem
increases. For the largest example that we computed, we
are able to synthesize an LLQG optimal controller for a
system with 9800 states in about 40 minutes using a laptop.
If the computation were to be parallelized across the 4900
subsystems (as would be done in a practical situation), the
synthesis procedure can be performed in under a second.

101 102 103 10410-2

100
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Local (total)
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Distributed

Fig. 3: The horizontal axis denotes the number of states, and the vertical
axis denotes computation time in seconds.
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