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What can we say about adaptive control of systems with finite state and
action spaces?

1. Learning problems
2. Information-theoretical limits

3. Algorithms



Adaptive control (Reinforcement learning)

Learning an optimal control strategy under unknown system dynamics

and cost function

Qy

System

Agent

Tt

Finite state and action spaces
Dynamics: @411 ~ p(-|xy, ar)
Cost: (c(zt,at) + &) ~ q(-|ze, ar)
p and q are initially unknown



Learn as fast as possible a policy 7* : S — A maximizing over all
possible m

(Average cost) liminfr_o 7 Eg‘ll ET[e(Xt, At))

Performance metrics. Sample complexity (PAC framework) or regret
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Structured RL

The structure ties the system dynamics and costs at the various (state,
action) pairs together. This may speed up the exploration process.

Observations at a given (state, action) pair provides useful
side-information at other pairs.

Examples of structure:

e The @Q-function belongs to a parametrized set (Deep RL)
e (p,q) are smooth, convex, unimodal, ...
e Linear system, quadratic cost



The decision maker knows that ¢ = (pg,q4) € .
® encodes the structure.

Examples.

1. Unstructured MDPs. ¢ € @ iff for all (z,a), ps(-|z,a) € P(S) and
qs(-|, a) € P([0,1]).

2. Lipschitz MDPs. ¢ € @ iff py(-|z,a) and cy(z,a) are
Lipschitz-continuous:

(L)  lpo(-lz,a) — po(-l2’,a) s < Ld(w,a')* + L'd(a, a’)*
(L2)  leg(x,a) — cp(a’,d)| < Ld(z,2')* + L'd(a,a’)*



Unstructured discounted RL: State-of-the-art

e Minimax lower bound for sample complexity and Q-sample
complexity: 2 (% logd—!
(no problem-specific lower bound so far)

e Algorithms:

- MBIE (Strehl-Li-Littman'05): SC = O (Wlogd )
MoRmax (Szita-Szepesvari'10): SC = @) (W logé~ )
- Q-learning: QSC = o (u_/\s)ﬁpolylogé >
Speedy Q-Learning (Azar et al.'11): o (ﬁpolylog5_1>
~ (Sidford et al.'18): O (% log 6*1)

Lwith optimized learning rate ay = 1/(t+ 1)4/5



Unstructured average-reward RL: State-of-the-art

e Regret lower bounds
- Problem-specific with known costs (Burnetas-Katehakis'97):
ce log(T)
- Minimax: Q(vDSAT) (D: diameter)
e No lower bound on sample complexity
e Algorithms:
- Asymptotically optimal algorithm (Burnetas-Katehakis'97)
- UCRL2 (Auer-Jaksch-Ortner'10): O (% log(T)> and
O (DSVAT)
- AJ (Agrawal-Jia'17): O (D\/SAT)
- Adversarial MDPs (changing every round). Abbasi-Yadkori'13:
O (DvSAT)

e All aforementioned results are for unstructured systems!



1. Learning problems and performance metrics
2. Information-theoretical limits

3. Algorithms



Fundamental limits

Let ¢ € ® be an unknown MDP with known structure.

Are there fundamental limits when learning an optimal policy?
Can we derive sample complexity and regret lower bounds?

A generic method to derive problem-specific limits, illustrated on the
regret minimization problem
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Information constraints

How much must a uniformly good algorithm explore (state, action)

pair (z,a) in its learning process?

Uniformly good = adaptive, i.e., has reasonable performance on all

systems.

Example (regret in average-cost RL): regret o(T%) for all & > 0 and all
ped.
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Information constraints

Data processing inequality: Let O; be the observations up to round t.
For all systems ¢, 1) € @, for any event E € o(0;),

Py[04]

Ey[log Pw[Ot]] > kl(Py(E), Py (E)).

A constraint is effective only for v such that:

e ¢ < 1) so that the l.h.s. not infinite

o II*(¢) NII*(¢)) = 0 so that the r.h.s. is as large as possible
Example (regret in ergodic RL): for uniformly good algorithms r.h.s.
~ log(t) for the best choice of E = {opt. actions for ¢ taken often}
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Towards regret lower bound in average-cost RL

e Information constraints: for all ¢ € Ag(¢),

Py[O4]

E¢[log B, 0]

] = 3 EjNu(z, a)K Ly (z,a) > log(t) (1 +o(1)),

(z,a)

where

Ap(¢) ={Y € : ¢ <9, II*(¢) NII*(¢) = 0}
KL¢W($7@) = KL(p¢(-\I,a),p¢(-|x,a)) + KL(Q¢(-|$,CL),(]¢(-‘I,G))

e Objective function: §*(x, a; @) is the regret induced by action a in :
6% (z,a; ) = (Byhg)(z) — (Bghg)(x)

where (Bgh)(z) = cy(x,a) + 3, ps(ylz, a)h(y) (Bellman operator)
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Regret lower bound

Theorem Any uniformly good algorithm exhibits a regret asymptoti-
cally greater than Kg¢(¢)log(T) where Kg(¢) solves:

min Zn(x,a)5*(x,a; ?)

n=>0

s.t. ZT}(m,a)KL¢|¢(x,a) >1, Y e As(p)

z,a

e 7(x,a)log(T) to be interpreted as the required number of times
(2, a) should be explored.

e Valid for any given structure ® (through Ag(0)).
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Impact of the structure on feasible regret

The lower bound is given by the solution of a semi-infinite LP:

P(¢, Fo(¢)): min Zn (z,a)0* (z,a;¢)

nEFs(P)

Simplifying the constraint set F¢(¢), we can conclude that:

e Unstructured RL problems: the best regret scales as 5 SA log(T")
where
- H: span of the bias function (finite for fast mixing systems)

- Omin: minimal (state, action) suboptimal gap

e Lipschitz RL problems: the best regret scales as f(H, dmin) log(T)
(independent of S and A)
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An other example of application

Sample complexity in LTI system identification

Uncontrolled system. z;.1 = Ax; + w;.

Sample complexity. 74 minimum time ¢ to get P4[||A; — Al > ¢] < 6.
Uniform goodness. (¢,d)-locally stable at A, i.e., there exists a finite
time 7 such that for all A’ € B(A, 3¢), Pa[||A; — A'||r > €] < 6.

Under any (e, d)-locally stable algorithm at A, we have:

Ta—1

hasn (3 Tarr (4) > 57 oa()

where T'y(A) = 377 _, AR(AM)T.
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1. Learning problems and performance metrics
2. Fundamental limits

3. Algorithms
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Algorithm design

Towards low regret in average-cost RL:

1. Optimism in front of uncertainty: UCRL

”Maintain a confidence ball for ¢ = (p, q), solve the MDP with the
best system in this ball”
Complex and sub-optimal in the case of structured problems

2. Posterior sampling: Thompson sampling

"Maintain a posterior for ¢ = (p,q), sample from it”
Impossible to implement in the case of structured problems

3. Directed Exploration Learning: exploiting regret lower bounds

"Maintain an estimate ¢, of the system ¢; solve the regret LB
optimization problem and explore according to its solution”
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Directed Exploration Learning

DEL: An algorithm that targets the exploration rates predicted by the

lower bound optimization problem.

In round t:

1. Estimate the system: ¢,
2. Solve min, e, (¢,) Dy 1(T,a)0" (2, a; ¢¢) or a simplified problem,
solution (n:(x,a))s.q

3. Select an action:
- If Ne(X¢,a) > nt(X¢,a) for all a, exploit: pick the best action seen

so far
- Else explore: pick an action such that N;(X¢, a) < n:(X¢,a)

Asymptotically optimal and flexible (may tune the regret-complexity
trade-off by selecting simplified LB optimization problems)
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Analysis via concentration inequalities

e Basic inequalities (e.g. Hoeffding): P(||¢; — ¢|| = 7) < cre—7°t
e Efficient algorithms exploit quantities of the form

w0 Nie(@,a) K Ly, (2, a).

Their regret analysis requires multi-dimensional concentrations of

self-normalized averages:

P |3 Nu(o, ) K Lgyp(a,0) 2 7| < o= (108 7 san
Z t\T,a ¢t|¢1:,a Z 7 € SA (& o

z,a
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Conclusions and challenges

e Critical to exploit the structure in large-scale RL
(empirically successful algorithms do it!)
e A generic two-step method:

1. Identify problem-specific fundamental performance limits satisfied by
any RL algorithm

2. Devise algorithms that approach the optimal exploration rates
dictated by these limits

e Challenges:

- Characterizing the performance-complexity trade-off
- Deriving tight finite-time performance guarantees
- Letting the state and action space grow — up to being continous
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