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Outline

What can we say about adaptive control of systems with finite state and

action spaces?

1. Learning problems

2. Information-theoretical limits

3. Algorithms

2



Adaptive control (Reinforcement learning)

Learning an optimal control strategy under unknown system dynamics

and cost function

Finite state and action spaces

Dynamics: xt+1 ∼ p(·|xt, at)
Cost: (c(xt, at) + ξt) ∼ q(·|xt, at)
p and q are initially unknown
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Objectives

Learn as fast as possible a policy π? : S → A maximizing over all

possible π

(Average cost) lim infT→∞
1
T

∑T
t=1 Eπx [c(Xt, At)]

Performance metrics. Sample complexity (PAC framework) or regret

Regret of π : RπT (x) = Eπx [

T∑
t=1

c(Xt, At)]− Eπ
?

x [

T∑
t=1

c(Xt, At)]

4



Structured RL

The structure ties the system dynamics and costs at the various (state,

action) pairs together. This may speed up the exploration process.

Observations at a given (state, action) pair provides useful

side-information at other pairs.

Examples of structure:

• The Q-function belongs to a parametrized set (Deep RL)

• (p, q) are smooth, convex, unimodal, ...

• Linear system, quadratic cost

• ...

5



Structures

The decision maker knows that φ = (pφ, qφ) ∈ Φ.

Φ encodes the structure.

Examples.

1. Unstructured MDPs. φ ∈ Φ iff for all (x, a), pφ(·|x, a) ∈ P(S) and

qφ(·|x, a) ∈ P([0, 1]).

2. Lipschitz MDPs. φ ∈ Φ iff pφ(·|x, a) and cφ(x, a) are

Lipschitz-continuous:

(L1) ‖pφ(·|x, a)− pφ(·|x′, a′)‖1 ≤ Ld(x, x′)α + L′d(a, a′)α
′

(L2) |cφ(x, a)− cφ(x′, a′)| ≤ Ld(x, x′)α + L′d(a, a′)α
′
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Unstructured discounted RL: State-of-the-art

• Minimax lower bound for sample complexity and Q-sample

complexity: Ω
(

SA
(1−λ)3ε2 log δ−1

)
.

(no problem-specific lower bound so far)

• Algorithms:

- MBIE (Strehl-Li-Littman’05): SC = O
(

S2A
(1−λ)6ε3

log δ−1
)

- MoRmax (Szita-Szepesvari’10): SC = Õ
(

SA
(1−λ)6ε2

log δ−1
)

- Q-learning1: QSC = Õ
(

SA

(1−λ)5ε5/2 polylogδ−1
)

- Speedy Q-Learning (Azar et al.’11): Õ
(

SA
(1−λ)4ε2

polylogδ−1
)

- (Sidford et al.’18): Õ
(

SA
(1−λ)3ε2

log δ−1
)

1with optimized learning rate αt = 1/(t+ 1)4/5
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Unstructured average-reward RL: State-of-the-art

• Regret lower bounds

- Problem-specific with known costs (Burnetas-Katehakis’97):

cφ log(T )

- Minimax: Ω(
√
DSAT ) (D: diameter)

• No lower bound on sample complexity

• Algorithms:

- Asymptotically optimal algorithm (Burnetas-Katehakis’97)

- UCRL2 (Auer-Jaksch-Ortner’10): O
(
D2S2A

∆
log(T )

)
and

Õ
(
DS
√
AT
)

- AJ (Agrawal-Jia’17): Õ
(
D
√
SAT

)
- Adversarial MDPs (changing every round). Abbasi-Yadkori’13:

Õ
(
D
√
SAT

)
• All aforementioned results are for unstructured systems!
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Fundamental limits

Let φ ∈ Φ be an unknown MDP with known structure.

Are there fundamental limits when learning an optimal policy?

Can we derive sample complexity and regret lower bounds?

A generic method to derive problem-specific limits, illustrated on the

regret minimization problem

10



Information constraints

How much must a uniformly good algorithm explore (state, action)

pair (x, a) in its learning process?

Uniformly good = adaptive, i.e., has reasonable performance on all

systems.

Example (regret in average-cost RL): regret o(Tα) for all α > 0 and all

φ ∈ Φ.
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Information constraints

Data processing inequality: Let Ot be the observations up to round t.

For all systems φ, ψ ∈ Φ, for any event E ∈ σ(Ot),

Eφ
[

log
Pφ[Ot]

Pψ[Ot]

]
≥ kl(Pφ(E),Pψ(E)).

A constraint is effective only for ψ such that:

• φ� ψ so that the l.h.s. not infinite

• Π?(φ) ∩Π?(ψ) = ∅ so that the r.h.s. is as large as possible

Example (regret in ergodic RL): for uniformly good algorithms r.h.s.

∼ log(t) for the best choice of E = {opt. actions for φ taken often}
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Towards regret lower bound in average-cost RL

• Information constraints: for all ψ ∈ ΛΦ(φ),

Eφ
[

log
Pφ[Ot]

Pψ[Ot]

]
=
∑
(x,a)

Eπφ[Nt(x, a)]KLφ|ψ(x, a) ≥ log(t)(1 + o(1)),

where{
ΛΦ(φ) = {ψ ∈ Φ : φ� ψ,Π?(φ) ∩Π?(ψ) = ∅}
KLφ|ψ(x, a) = KL(pφ(·|x, a), pψ(·|x, a)) +KL(qφ(·|x, a), qψ(·|x, a))

• Objective function: δ?(x, a;φ) is the regret induced by action a in x:

δ∗(x, a;φ) = (B?
φh

?
φ)(x)− (Ba

φh
?
φ)(x)

where (Ba
φh)(x) = cφ(x, a) +

∑
y pφ(y|x, a)h(y) (Bellman operator)
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Regret lower bound

Theorem Any uniformly good algorithm exhibits a regret asymptoti-

cally greater than KΦ(φ) log(T ) where KΦ(φ) solves:

min
η≥0

∑
x,a

η(x, a)δ?(x, a;φ)

s.t.
∑
x,a

η(x, a)KLφ|ψ(x, a) ≥ 1, ∀ψ ∈ ΛΦ(φ)

• η(x, a) log(T ) to be interpreted as the required number of times

(x, a) should be explored.

• Valid for any given structure Φ (through ΛΦ(φ)).
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Impact of the structure on feasible regret

The lower bound is given by the solution of a semi-infinite LP:

P (φ,FΦ(φ)) : min
η∈FΦ(φ)

∑
x,a

η(x, a)δ?(x, a;φ)

Simplifying the constraint set FΦ(φ), we can conclude that:

• Unstructured RL problems: the best regret scales as H2

δmin
SA log(T )

where

- H: span of the bias function (finite for fast mixing systems)

- δmin: minimal (state, action) suboptimal gap

• Lipschitz RL problems: the best regret scales as f(H, δmin) log(T )

(independent of S and A)
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An other example of application

Sample complexity in LTI system identification

Uncontrolled system. xt+1 = Axt + wt.

Sample complexity. τA minimum time t to get PA[‖Ât−A‖F ≥ ε] ≤ δ.

Uniform goodness. (ε, δ)-locally stable at A, i.e., there exists a finite

time τ such that for all A′ ∈ B(A, 3ε), PA′ [‖Ât −A′‖F ≥ ε] ≤ δ.

Under any (ε, δ)-locally stable algorithm at A, we have:

λmin

( τA−1∑
s=1

Γs−1(A)
)
≥ 1

2ε2
log(

1

2.4δ
)

where Γs(A) =
∑s
k=0A

k(Ak)>.
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Algorithm design

Towards low regret in average-cost RL:

1. Optimism in front of uncertainty: UCRL

”Maintain a confidence ball for φ = (p, q), solve the MDP with the

best system in this ball”

Complex and sub-optimal in the case of structured problems

2. Posterior sampling: Thompson sampling

”Maintain a posterior for φ = (p, q), sample from it”

Impossible to implement in the case of structured problems

3. Directed Exploration Learning: exploiting regret lower bounds

”Maintain an estimate φt of the system φ; solve the regret LB

optimization problem and explore according to its solution”
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Directed Exploration Learning

DEL: An algorithm that targets the exploration rates predicted by the

lower bound optimization problem.

In round t:

1. Estimate the system: φt

2. Solve minη∈FΦ(φt)

∑
x,a η(x, a)δ?(x, a;φt) or a simplified problem,

solution (ηt(x, a))x,a

3. Select an action:

- If Nt(Xt, a) ≥ ηt(Xt, a) for all a, exploit: pick the best action seen

so far

- Else explore: pick an action such that Nt(Xt, a) < ηt(Xt, a)

Asymptotically optimal and flexible (may tune the regret-complexity

trade-off by selecting simplified LB optimization problems)
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Analysis via concentration inequalities

• Basic inequalities (e.g. Hoeffding): P(‖φt − φ‖ ≥ γ) ≤ c1e−c2γ
2t

• Efficient algorithms exploit quantities of the form∑
x,aNt(x, a)KLφt|ψ(x, a).

Their regret analysis requires multi-dimensional concentrations of

self-normalized averages:

P

[∑
x,a

Nt(x, a)KLφt|φ(x, a) ≥ γ

]
≤ e−γ

(
(γ)2 log t

SA

)SA
eSA+1.
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Conclusions and challenges

• Critical to exploit the structure in large-scale RL

(empirically successful algorithms do it!)

• A generic two-step method:

1. Identify problem-specific fundamental performance limits satisfied by

any RL algorithm

2. Devise algorithms that approach the optimal exploration rates

dictated by these limits

• Challenges:

- Characterizing the performance-complexity trade-off

- Deriving tight finite-time performance guarantees

- Letting the state and action space grow – up to being continous
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