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Machine learning techniques – bolstered by successes in video games, so-
phisticated robotic simulations, and Go – are now being applied to plan and
control the behavior of autonomous systems interacting with physical environ-
ments. Such systems, which include self-driving vehicles, distributed sensor
networks, and agile robots, must interact with complex environments that
are ever changing and difficult to model, strongly motivating the use of data-
driven decision making and control. However, if machine learning techniques
are to be applied in these new settings, it is critical that they be accompanied
by guarantees of reliability, robustness, and safety, as failures could be catas-
trophic. To address these challenges, my research is focused on developing
learning-based control strategies for the design of safe and robust autonomous networked systems.

In its broadest sense, my work seeks to understand how well a system (or the environment it operates in)
needs to be learned in order to effectively and safely control it. This involves understanding and integrating the
following three design steps: (i) system/environmental identification and modeling, (ii) policy and control design,
and (iii) adaptation and refinement. My approach is to recognize that machine learning algorithms produce
estimates or predictions that are inherently uncertain, and therefore this uncertainty must be explicitly quantified
(e.g., using non-asymptotic guarantees of contemporary high-dimensional statistics) and accounted for (e.g., using
robust control/optimization) when designing safety critical systems. I describe my approach and research vision
for robust learning-based control in Section 1 below, with the ultimate goal of this line of research being
to provide a rigorous and contemporary view on reinforcement learning as applied to continuous control
problems.

Further, in addition to the challenges described above, many systems of interest today are large-scale, dis-
tributed, and networked (e.g., the smart-grid, software defined networks, automated transportation systems).
Another major thrust of my work is extending methods from learning and control to this large-scale networked
setting, wherein information exchange constraints between agents, as well as scalability of methods, play an im-
portant role. I describe my approach and research vision for learning and control in large-scale networked
systems in Section 2 below, which builds on previous work that already has had significant impact in the controls
community (with [4] winning the IEEE CDC 2013 Best Student Paper Prize, and [12] winning the IEEE
ACC 2017 Best Student Paper Prize).

There is a broad and exciting research frontier at the intersection of learning and control, and my research
background makes me exceptionally well suited to make significant impact in this interdisciplinary and timely
area. Going forward, I aim to build a research program that both expands our theoretical understanding of
the interplay between machine learning and control, and that uses these theoretical insights to design and
implement real-world algorithms that are safe, sample-efficient, and robust. Specifically, I plan to develop
methods that are applicable to richer system models, learning algorithms, and control approaches (e.g., nonlinear,
model-predictive-control, vision based control, etc.), and to extend these approaches to be applicable to large-scale
networked systems of autonomous agents (e.g., moving from a single self-driving car to a fleet of autonomous
vehicles). I also aim to work with practitioners in domains such as self-driving vehicles, computer networking,
and robotics to validate our methods experimentally. Concrete steps towards achieving these goals are outlined in
more detail below.

1 Robust Learning-Based Control

Given the dramatic successes in machine learning and reinforcement learning (RL) over the past half decade, there
has been a resurgence of interest in applying these techniques to continuous control problems in robotics, self-
driving cars, and unmanned aerial vehicles. Though such applications appear to be straightforward generalizations
of standard RL, few fundamental baselines have been established prescribing how well one must know a system in
order to control it. Further, learning algorithms produce estimates and predictions that are inherently uncertain
– when using such algorithms in safety and performance critical control loops, it becomes imperative to explicitly
quantify and account for this uncertainty in a sample-efficient manner.
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To that end, in [1], we describe a contemporary view that merges techniques from statistical learning theory
and robust control to derive baselines for an optimal control problem – the linear quadratic regulator (LQR) –
wherein the system model to be controlled is unknown. We propose a simple 3-step strategy: (i) use least-squares
to estimate a model based on experiments, (ii) use bootstrapping techniques to build probabilistic guarantees
about the distance between the estimated and true model, and (iii) solve an optimal control problem that robustly
optimizes the performance of the system while guaranteeing stable and robust execution for any realization of
the estimated model uncertainty. Leveraging our recently developed System Level Synthesis (SLS) framework,
we provide the first known baselines delineating the possible control performance achievable given a fixed amount
of data collected about the system, bringing rigor to reinforcement learning methods in continuous control. We
show that (i) robustness is not only necessary from a practical perspective, but is also essential to making the
analysis of our approach tractable, and (ii) that by explicitly identifying a model, we are able to rapidly (i.e., in
a sample-efficient manner) synthesize stabilizing and high-performing controllers.

In follow up work, we extend this approach to a model based reinforcement learning algorithm with provable
sublinear regret bounds (the first such algorithm that is polytime computable, and that provides guarantees of
robust stability and performance throughout) [2], and to allow for safety constraints to be satisfied during the
learning process [3]. Our emphasis on verifiable robustness and stability has made this work perfectly suited for
DARPA’s Assured Autonomy program, which has been funding this research for the past year.

Future Work

These results represent a modern take on robust, adaptive, and reinforcement learning based control, and to the
best of our knowledge, establish the first end-to-end baselines for learning in optimal control problems that do
not require restrictive or unrealistic assumptions. A key enabling technical tool in deriving these results is System
Level Synthesis, which for the first time allows for clean and interpretable bounds on the performance of a robust
controller to be obtained in terms of the size of the uncertainties of the system estimates. As we describe next,
although these results are exciting, they represent the beginning of a much broader line of research.

Richer Models and Modalities: An important next step is to consider richer (and more realistic) ways in
which learning enabled components are integrated into control and optimization loops. Indeed, in many appli-
cations of interest, the dynamics of the system are well understood, and it is rather the sensing modalities that
require learning-enabled components. As a concrete example, consider a self-driving car: under normal operating
conditions, simple and well understood models are sufficient for control. However, translating sensor data (e.g.,
pixels from a camera or point clouds from a lidar) to useful measurements for control (e.g., cross-track error from
the center of the lane) requires a complex nonlinear map that must be learned. As the output of this uncertain
map will be fed directly into a safety critical control loop, it is essential to be able to provide guarantees about
the accuracy of its output, as well as to understand under what conditions those guarantees do and do not hold.

A natural question that then arises from the previous discussion is how can we learn such a map (e.g., from
pixel space to position) in such a way that is both data-efficient and amenable to control. We conjecture that key
to this procedure will be exploiting and enforcing the fact that the high-dimensional data (e.g., camera images)
is generated by a process constrained to a lower-dimensional manifold defined by the dynamics of the underlying
system (e.g., a subspace in the case of a linear system). This also raises the broader question of how should
learning algorithms be tuned to the specific control task at hand, which we believe will be an important and
fruitful direction for future work.

Beyond Linear Time Invariant Learning and Control: In [1], we consider the simplest possible con-
trol paradigm: an unconstrained linear-time-invariant system being controlled by an unconstrained linear-time-
invariant controller. Ultimately, the systems that we care about, as well as the environments that they interact
with, are nonlinear and constrained. Future work will look to bridge this gap in several ways. First, the results
derived above, and in particular the SLS framework, can be naturally incorporated into a model predictive con-
trol (MPC) framework, allowing us to naturally incorporate constraints on the state and control input, allowing
our approach to accommodate to a much richer notion of safety (see [3] for a flavor of such results). Further,
when integrated with sequential linearization, these methods have proven to be effective heuristics in controlling
nonlinear systems. Finally, recent lifting techniques (e.g., those based on Koopman theory) suggest that certain
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nonlinear systems can indeed be analyzed using linear systems tools – this represents an interesting direction for
future work.

Figure 1: Unity3d based self-
driving car simulator released by
Udacity.

Self-Driving Car Simulation and Experimental Validation: I am
currently exploring applications of our safe learning and control algorithms
using the Unity3d based self-driving car simulator that Udacity has re-
leased as open-source code (see Figure 1). This simulator is ideally suited
to rapid prototyping and validation of learning-based control algorithms as
it presents many of the challenges inherent to real-world hardware imple-
mentations (latency and multithreading issues, nonlinear and unspecified
vehicle and environment dynamics, etc.) without the difficulties and over-
head related to developing and maintaining a hardware testbed. It also
allows for easily switching between different sensing modalities (ground
truth, noisy sensors, lidar, vision based navigation), meaning that increas-
ingly sophisticated and rich models/learning algorithms can be validated
using this simulation testbed. I am also beginning a collaboration with
Francesco Borelli’s group, and ultimately aim to move algorithms validated in this simulation environment to
their 1/10 scale self-driving car platform over the coming months.

2 Learning and Control in Large-Scale Networked Systems

As large-scale networked systems become increasingly dynamic and decentralized, feedback control systems will
be essential in guaranteeing their reliable and robust behavior – indeed robust and predictable behavior at the
component level of a system allows higher system-level tasks, such as resource allocation, learning and exploration,
and optimizing social/economic welfare, to be made simpler and more efficient.

Therefore, in order to move from the design of a single autonomous system to a large network of interconnected
and interacting autonomous agents, several technical challenges must be overcome. Even without learning enabled
components, the problem of computing distributed optimal controllers at scale is a difficult one. Indeed, even
seemingly simple decentralized optimal control problems are intractable (e.g., Witsenhausen’s counterexample),
making it a challenge to extend foundational results of the field (e.g., the Youla parameterization and DGKF
state-space solutions) to the distributed setting. A recent breakthrough was the identification of a broad class of
tractable (convex) distributed optimal control problems by Rotkowitz and Lall in 2006. These systems satisfy a
quadratic invariance (QI) property, and allow classical (Youla) based synthesis methods to be used to compute
structured controllers. Although QI was an important step forward, the resulting controllers were not scalable to
synthesize or implement. This lack of scalability has prevented the adoption of these methods in practice, limiting
their scope to systems with at most a few hundred states. We address this issue by using our recently developed
System Level Synthesis framework [14, 13], in which we present an alternative to the Youla parameterization that is
naturally suited to distributed (structured) controller synthesis. By rethinking and generalizing this foundational
pillar of modern control theory, we are able to identify the broadest known class of convex constrained linear
optimal control problems, of which QI distributed optimal control problems are a special instance.

Unlike its predecessors, our approach allows for the synthesis of localized system responses and corresponding
controllers, in which local control policies depend only on local subsets of the global system model and state
[10, 11, 9, 8]. The importance of this contribution was recognized by the controls community, with the paper
[12] being awarded the Best Student Paper Award at the 2017 IEEE American Control Conference.
The notion of locality, which could not be captured by existing theory, allows us to scale structured optimal
controller synthesis methods to systems of arbitrary size (assuming sufficient parallel computing power): an
example illustrating the benefits of our approach on controller synthesis computation time are shown in Figure
2. In addition to the aforementioned locality constraints, the system designer can simultaneously impose multiple
performance objectives, structural constraints on the controller, robustness to quantization in the communication
and internal computation of the controller, robustness to modeling error, and limits on the actuation, sensing
and communication complexity of the resulting controller [11, 6, 4, 5, 7] (with [4] winning the CDC 2013 Best
Student Paper Prize). Thus, by generalizing the foundational results of QI and the Youla parameterization,
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System Level Synthesis provides, for the first time, a unified framework for customized controller synthesis that is
applicable to large-scale distributed systems.

1 End-to-End Sample Complexity Guarantees for Optimal Control

Given the dramatic successes in machine learning and reinforcement learning (RL) over the past half decade,
there has been a resurgence of interest in applying these techniques to continuous control problems in robotics,
self-driving cars, and unmanned aerial vehicles. Though such applications appear to be straightforward gen-
eralizations of standard RL, few fundamental baselines have been established prescribing how well one must
know a system in order to control it. In [5], we describe a contemporary view that merges techniques from
statistical learning theory and robust control to derive baselines for a “Learning LQR” optimal control prob-
lem wherein the system model to be controlled is unknown. We propose a simple 3-step strategy: (i) use
least-squares to estimate a model based on experiments, (ii) use bootstrapping techniques to build probabilis-
tic guarantees about the distance between the estimated and true model, and (iii) solve an optimal control
problem that robustly optimizes the performance of the system while guaranteeing stable and robust execu-
tion for any realization of the estimated model uncertainty. We provide characterizations of the complexity
of learning a linear-time-invariant systems and identify tradeoffs based on how easily controlled a system is,
and further provide sub-optimality guarantees for the robustly stabilizing controller synthesized using the
aforementioned procedure. These results represent a modern take on robust, adaptive and RL based control,
and to the best of our knowledge, establish the first end-to-end baselines for learning in an LQR problem that
do not require restrictive or unrealistic assumptions. This is of course just a first step towards the broader
goal of bringing rigor to RL based control, with the end-goal being to guarantee the safe, efficient and robust
execution of learning systems as applied to continuous control problems: I outline these future plans in §4.

A key enabling technical tool in deriving these results is the System Level Approach to Controller Synthesis
[1, 2, 3, 4], which for the first time allows for clean and interpretable bounds on the performance of a robust
controller to be obtained in terms of the size of the uncertainties of the system estimates. As we describe
next, the SLA also represents a major breakthrough in the scalability of distributed optimal control methods.

2 A System Level Approach to Controller Synthesis
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Figure 1: Computational time needed for the
synthesis of centralized, distributed (QI) and lo-
calized (SLA) LQR controllers as a function of
system size.

As modern CPS become increasingly dynamic and decentralized,
feedback control systems will be essential in guaranteeing their
reliable and robust behavior – indeed robust and predictable be-
havior at the component level of a system allows higher system-
level tasks, such as resource allocation, learning and exploration,
and optimizing social/economic welfare, to be made simpler and
more efficient. However, even seemingly simple decentralized
optimal control problems are intractable (e.g., Witsenhausen’s
counterexample), making it a challenge to extend foundational
results of the field (e.g., the Youla parameterization and DGKF
state-space solutions) to the distributed setting. A recent break-
through was the identification of a broad class of tractable (con-
vex) distributed optimal control problems by Rotkowitz and Lall
in 2006. These systems satisfy a quadratic invariance (QI) prop-
erty, and allow classical (Youla) based synthesis methods to be
used to compute structured controllers. Although QI was an im-
portant step forward, the resulting controllers were not scalable
to synthesize or implement. This lack of scalability has prevented the adoption of these methods in practice,
limiting their scope to systems with at most a few hundred states.

We address this issue by developing the System Level Approach to Controller Synthesis [1, 2, 3, 4], in which
we present an alternative to the Youla parameterization that is naturally suited to distributed (structured)
controller synthesis. By rethinking and generalizing this foundational pillar of modern control theory, we are
able to identify the broadest known class of convex constrained linear optimal control problems, of which QI
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Figure 2: Computational time needed
to synthesize centralized, distributed
(QI), and localized (SLS) controllers as
a function of system state size.

Future Work

Robustness and Safety for Networked Systems: I believe it is
essential to develop a theory of robustness, akin to that from the 90s
centered around H∞ optimal control and µ-synthesis, that is applicable
to large-scale distributed systems. In addition to these methods being
poised to have significant impact on emerging areas such as smart-grids
and intelligent transportation systems, they are key to the principled
integration of learning enabled components. The key in this setting will
be identifying appropriate structural constraints on model uncertainty
(to capture the spatially distributed nature of the system) to impose
in order to ensure robust, but not overly conservative, behavior. SLS
is ideally suited for tackling this problem as it provides a transparent
mapping between system uncertainty and its effect on system perfor-
mance. Similarly, SLS provides a straightforward avenue for extending
MPC (and its ability to include state and input constraints) to the distributed large-scale setting – this is an
avenue that we are actively pursuing and expect to have preliminary results for shortly.

Figure 3: Production Wide Area Net-
work (WAN) used to validate our High
Frequency Traffic Control algorithm.

Distributed Learning and Control: Consider a fleet of similar (but
not quite identical) self-driving vehicles navigating through a city and
collecting camera, lidar, and other telemetry data. How can the data
collected by the entire fleet be leveraged to improve the safety and per-
formance of each individual vehicle, despite differences in individual ve-
hicle dynamics, operating conditions, etc. Answering this question will
involve drawing on tools from distributed learning and robust control in
order to develop learning and control algorithms that leverage the col-
lective data of the fleet to improve the behavior of an individual vehicle.
As a concrete first step in this direction, I am currently collaboration
with Somayeh Sojoudi’s group at UC Berkeley to integrate our localized
optimal control paradigm with structured inference (namely LASSO) to
extend the results of [1] to the large-scale distributed setting.

Learning and Control in Computer Networks: An exciting de-
velopment in the world of computer networking is the introduction of
Software Defined Networking (SDN), which provides an abstraction be-
tween the traditional forwarding (data) plane and the control plane of a
network. This abstraction allows for an explicit separation between data
forwarding and data control, and provides an interface through which network applications can programmatically
control the network. This in turn allows for diverse, distributed application software to be run using diverse,
distributed hardware in a seamless way. With this increased design freedom comes the opportunity to design more
sophisticated, dynamic, and reactive learning-based network control algorithms.

As a concrete example of progress made in this area, I have developed and implemented (in collaboration with
Ao (Kevin) Tang and his group at Cornell University) a novel approach to in-network congestion management,
which we call High Frequency Traffic Control (HFTraC) [15], that operates at the network layer at the timescale
of round-trip time. HFTraC’s objective is to minimize a weighted sum of queue length and flow rate fluctuation by
utilizing available buffer space in routers network-wide, allowing for the principled exploration and optimization
of the tradeoff between packet loss % and queueing length. Another key component of this work is quantifying
how the achievable performance of HFTraC is determined by the network architecture used to implement it (e.g.,
whether router service rate decisions are computed in a decentralized, distributed or centralized manner). Finally,
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in order to validate the effectiveness of HFTraC, we implement and evaluate its performance on a custom designed
experimental testbed, a Mininet emulator, and a production wide area network (WAN) (see Figure 3).

Leveraging my expertise across learning-based control, distributed optimal control, and SDN, I am currently
collaborating with Ion Stoica at UC Berkeley to develop reinforcement learning based congestion control algorithms.
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