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Problem statement

» Given input/output access to x,, | = Ax, + Bu, + w.,.
« Assume w, ~ N (0,6°1).
« Goal is to recover (A, B) given I = {(x,, U;, X, 1) }1T=_01°

+ Want bounds on estimators (A, I§) of the form:
P(|A = Al > ¢e) <6,
P(||B - B|| > ¢) < 6.
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“ Basic least-squares estimator:
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Least-squares estimator

“ Basic least-squares estimator

(A, B) = argmm—Z |x;,  — Ax; — Bu||*.

A )
=0

+ Has closed-form solution:

VaN

. —1 t—1 1 X
A=ty e = [u -
=0 =0

I —
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What do we know about L.S?

+ Asymptotics of the least-squares estimator are well understood (in both
stable /unstable case).

« For simplicity, let us assume scalar autonomous system:

L= dl

+ Then from [Mann and Wald 1943, White 1958], we have a CLT:
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» @ is a non-standard distribution, ¥ is standard Cauchy.
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What do we know about L.S?

+ CLT:

VTG —a) S #0,1-ad)if |a] <1,
TGy —a) S @if |a| =1,
1a|T(Gr—a) S (@ = D¥if |a| > 1

« Therefore, as a becomes more “explosive”, estimation
becomes easier!
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Beyond asymptotics

* Can we prove finite-time (non-asymptotic) rates in the
scalar case?

* Can we generalize to the vector case?
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Roadmap

+ Proof sketch of autonomous scalar case.
+ Discuss why vector case is a non-trivial extension.

+ Discuss state-of-the-art results in the vector case.
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Scalar case setup

s Dymamicsarex [ =ax, Ew.

i
Zizo XiXit1

LS estimator simplifies to a, =
0:0 t_l 2
ziz() xi

+ FError is therefore:
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Key scalar martngale

[—
_ Define M, := Z X;W
(=0

« Define the filtration &,

= oWy, ..., W,_1).

® (4, x M )are # —measurable.

« Furthermore, M, is a martmgale since:

_[Mt+1 | F

t]— = (M, | F

=M+ xElw [ |

=Mt

7 Eb
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Key scalar martngale

« Next, we define the quadratic variation (M), as:
i

(M), := ) E[(M;,, - M)*| F).
=0

I
A quick computation shows that (M), = ¢~ 2 v

l
1=0

+ Therefore, we can write:

il
Zizo XiWi 5
et = =

S % g (M),
=0 !
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Self-normalized processes

M
. It turns out that the quantity <Mt> is well-studied in
[

probability theory.

“ Is often referred to as a self-normalized process.

“ A rich body of concentration inequalities to draw from
that are of the form:

BV a )=
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“ One concrete result from [Bercu and Touati 08]:
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Self-normalized inequality

“ One concrete result from [Bercu and Touati 08]:

[ |: ( > >:| ]l/l?
P(Mn > a<M>n) = ln{ - | €XP _(p i 1)7<M>n ;
p=

Sanity check: it M, = Z w, with w; ~ /V((),GZ), then this
i=1

reduces to P ( Z w; > t) < exp(—ﬂ/ (2no?)).

i
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Bounding moment generating function

* The next step is to control:
1-1
E exp QZXE , 0 <O0.
1=0
* By tower property of expectations:

E | exp (92 )[E[exp Or )lfsz]]

T |
— = [exp <92x12) Elexp H(axT »+ Wy 1)2) | F 5]
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An elementary MGF bound

« An elementary result states that for 8 < 0 and u fixed,

|
- exp(O(u + W) < . w ~ H(0,06°).
V1 — 2620

2 T}_\erefore:

D : : 12 2
E |exp (92 xf) Elexp (Hx%_l) | F 51| =E |exp <92 xl.2> Elexp (Q(axT_z + wT_l)z) | F 1]

=0 =0
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« Recall the inequality from [Bercu and Touati 08]:

2
:
P(e, > v) < inf | E ==l ’
CERRSS ["< " )2022’%)}

1/p
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Puttng it together

« Recall the inequality from [Bercu and Touati 08]:

V2 =1
Pley 2 v) < inf[E |exp | —(p— == ) &7

p>1 202 :
=0

1/p

+ Now setting 0 = — (p — 1)V2/ (202),
1/2p

<

T/4
1

1 + 12

P(e; > v) < int
Pl

14+ (p—1v?



Putting 1t together



Putting 1t together

« Repeating the same argument for —e;, we obtain our
first concentration inequality by a union bound:
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« Repeating the

same argument for —e;, we obtain our

first concentration inequality by a union bound:

P(ler|l 2v) <2

« Inverting this |

[ A
1+ v2] '

bound for large 7, this states that with

probability at

east 1 — 6, we have roughly:

1
er] S \/ —log(1/5).

/&



Drawbacks of bound



Drawbacks of bound

+ Note that this bound we derived is not sharp!



Drawbacks of bound

+ Note that this bound we derived is not sharp!

« First, consider stable |a| < 1. From CLT we know that
ﬁ er - (0,1 — a?). Hence a more correct bound would

T 2

i

have the form | e;| < \/



Drawbacks of bound

+ Note that this bound we derived is not sharp!

« First, consider stable |a| < 1. From CLT we know that

ﬁ er - (0,1 — a?). Hence a more correct bound would

Tt

i

have the form | e;| < \/

» Situation is even worse for unstable |a| > 1, where we

|
-

expect exponential rates: |e;| <
| a



Sharpening the scalar bound

* The bound can be sharpened by a more refined MGF
analysis— see Theorem B.1 from [Simchowitz et al. 19].
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Vector case setup

* Our setup is now x,, | = Ax, + w,.

+ The error term is:

T—1 T-1 =
Er:= 2 wixiT 2 xl-xl.T .
i=0 i=0

* We consider the following decomposition:

=7
I=I T =1 T
(Z,-zo WiX; ) (Zizo XX )

\/ /lmin ( ZZ:OI xixiT )

|E7|| <
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T—1 T—1
: The term Z wl-xl-T Z
: i=0

1=0)

valued self-normalized martingale. For s

T

>1/2

1S a vector-

table A, also

not too difficult to bound [Abbasi-Yadkori et al. 11].



Vector case setup

-1 -1 e
The term Z wx,' Z i is a vector-
: =0

=0
valued self-normalized martingale. For stable A, also
not too difficult to bound [Abbasi-Yadkori et al. 11].

=l
_ The tricky part is lower bounding 4,;, ( Z x-xl.T )
=0
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. Define X := Z xl-xl.T .For @ >

P (fin(Er) < v) = P(= 04 (1) = — OV)
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Attempt 1: Matrix Chernoff

T-1
. Define X := Z xl-xl.T .For @ >

P (fin(Er) < v) = P(= 04 (1) = — OV)

= P(exp(—OA,in(Z7)) = exp(—6v))
< exp(Ov)E exp(— 04, (7))

= exp(@v)E exp(4,,(—027))

= exp(Ov)EA, (exp(—027))

< exp(@v)Etrexp(—02;)

+ Therefore:

P(A,i(Z7) < v) < 1nf exp(—0v)Etr exp(0Z ;).

6<0

min
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Attempt 1: Matrix Chernoff

1

2]
- exp(6 Z xiz) <
i=0

+ The matrix version is to bound

(1 —20620)712

+ In the scalar case, we were able to bound for 6 < 0,

-tr exp(f2y).

« The difficulty is that exp(A + B) # exp(A)exp(B) for
matrices, so the scalar proof does not go through.
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Attempt 2: Scalar projections

* To avoid matrix issues, we can consider the scalar process

2 (v, x;)* for a fixed v € §*1.

1=0
I
~ We can then use scalar analysis to lower bound Z (v.x) for
=0

each fixed v.

e
2 But Apyin( Z ) 7 Iﬁllfl Z v, Xi>2- How do you pass to
i=0

umformly O 57
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Attempt 2: Scalar projections

* Nailve covering argument:
=l

T—1
/lmin( Z xixiT) = ||iT|lf1 Z <V’ xi>2
' a=

I e
> min ) (v,x)* ~ 2el| ) x|
MO =



Attempt 2: Scalar projections

* Nailve covering argument:

-1 =i

T . 2

4. E XX, ) = inf E (v, X;)
55 =1 s
(=0 i=0

T~ T-1
> min )" (v,x,)? = 2¢]| ) x|
VEN(¢) i =

T
. Bul this requires upper bound on || Z xixl.T ||, which is very
i=0
unsatisfying! (nevertheless this does work in the stable case).
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« [Simchowitz et al. 19]: If p(A) < 1, then with probability
at least 1 — o:
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Stable case

« [Simchowitz et al. 19]: If p(A) < 1, then with probability
at least 1 — o:

s nlog(n/d)
4 = T/Imin(zoo).

« Here, X is the stationary covariance:
Az A 7 _+o1-10
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Marginally stable case

« [Simchowitz et al. 19]: In the special case when A = O
with O orthogonal, then with probability 1 — é:
% nlog(n/o)
A7 = Al S =




“Explosive™ case

« [Sarkar and Rakhlin 19]: If |A.| > 1 for all i, then with

probability at least 1 — o:
1Az = All S lATH|I/8.
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