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Abstract— Reinforcement learning (RL) and other AI meth-
ods are exciting approaches to data-driven control design, but
RL's emphasis on maximizing expected performance contrasts
with robust control theory (RCT), which puts central emphasis
on the impact of model uncertainty and worst case scenar-
ios. This paper argues that these approaches are potentially
complementary, roughly analogous to that of a driver and an
engineer in, say, formula one racing. Each is indispensable
but with radically different roles. If RL takes the driver
seat in safety critical applications, RCT may still play a role
in plant design, and also in diagnosing and mitigating the
effects of performance degradation due to changes or failures
in component or environments. While much RCT research
emphasizes synthesis of controllers, as does RL, in practice
RCT's impact has perhaps already been greater in using
hard limits and tradeoffs on robust performance to provide
insight into plant design, interpreted broadly as including
sensor, actuator, communications, and computer selection and
placement in addition to core plant dynamics. More automation
may ultimately require more rigor and theory, not less, if our
systems are going to be both more efficient and robust. Here
we use the simplest possible toy model to illustrate how RCT
can potentially augment RL in finding mechanistic explanations
when control is not merely hard, but impossible, and issues
in making them more compatibly data-driven. Despite the
simplicity, questions abound. We also discuss the relevance of
these ideas to more realistic challenges.

I. INTRODUCTION

From vision-based control to agile robotics, learning based
methods have been applied to continuous control problems
with tremendous and dramatic success. Perhaps even more
impressive is that in many such cases, the most successful
learning based control methods have been model-free, in
that no explicit representation of the system dynamics (e.g.,
the function mapping current state and action to next state)
is learned.1 Indeed, such methods have many favorable
properties, such as being broadly applicable and simple to
implement, and not suffering from bias due to improper
model class selection.

Although undeniably impressive, many (if not most) of
these demonstrations were performed in highly-controlled
and stylized settings, wherein safety and robustness were
not primary concerns. However, recent catastrophic failures
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1Although there is no agreed upon definition of model-free or model-
based methods, for the purposes of this paper, we restrict ourselves to the
following simple dichotomy: a method is model-based if it learns a function
mapping current state and action to next state; otherwise, it is model free.

of learning based control systems (e.g., autonomous vehicle
involvement in fatal collisions) underscore the need to ensure
that such methods be both interpretable, i.e., root causes of
failures can be identified and remedied, and provably safe.
This need for robustness and safety has motivated the devel-
opment of model-based methods, wherein an approximate
system model is learned, its uncertainty is quantified, and
then an optimal or robust controller is computed with respect
to this nominal model and uncertainty set. Such methods are
reminiscent of classical approaches to robust control, with
the main difference being that contemporary results focus
on providing finite-data sample guarantees.

The vast range and scope of model-free and model-based
methods has made it difficult to quantitatively compare them.
In light of this, the optimal linear quadratic (LQ) control
of an unknown linear-time-invariant system has proved to
be a useful and perhaps surprisingly challenging benchmark
for learning based control methods [15]. Initiated in [9],
and revisited in [3], [7], the contemporary study of this
problem has focused on providing bounds on the amount
of data needed for near optimal performance. These two
references, as well as [2], [4]–[6], [13], [14], [16], take
a model based approach wherein estimates of the linear
dynamics are learned and used to synthesize a controller,
and prove sub-linear regret bounds on the performance of
adaptive control strategies under a variety of assumptions.
In a parallel line of work, model-free methods have also
been shown to converge to optimal control policies for the
LQ control problem [1], [8], [10], [18], again with regret
bound guarantees provided under a variety of assumptions.
We refer the interested reader to [11] for an exhaustive and
historical perspective on the interplay between learning and
control.

We emphasize here that all of the aforementioned results
focus on characterizing upper bounds on the performance of
learning based control strategies on the LQ control problem,
once again making it difficult to rigorously and quantitatively
compare methods. In fact, while such upper bounds are
common in the literature, lower bounds are few and far
between. To the best of our knowledge, the only such lower
bounds can be found in [17], the authors derive asymptotic
lower bounds on the number of samples needed by both
the classical least-squares-temporal-differencing (LSTD) es-
timator for policy evaluation, and policy gradient methods for
policy improvement, and in doing so, demonstrate a provable
gap between model-free and model-based methods for the
LQ problem.

Although lower bounds are uncommon in the learning



based control literature, a rich set of results on the funda-
mental limits of control can be found in the robust control
literature. For example, it is well known that if a system has
an open-loop unstable pole p and unstable zero q, and that
these are close in value (i.e., there is a near unstable pole/zero
cancellation), then this lower bounds the H∞ norm of the
complementary sensitivity function as Ω( 1

|p−q| ). To the best
of our knowledge, no investigation of the effects of such
fundamental limits on learning based control methods exist
in the literature – this absence may be due to the fact that
many demonstrations of learning based control methods are
on over-engineered systems for which sensing and actuation
are not an issue. However, as learning systems move from
the lab into the real world, systems with full-sensing that
are overly-actuated may become prohibitive or impossible to
build.

This paper provides a first step towards connecting fun-
damental limits from robust control to the performance,
robustness, and sample-efficiency of both model-based and
model-free algorithms. We perform an empirical study com-
paring and contrasting a simple model-based baseline with
a simple model-free approach. In particular, for our model-
based baseline, we use the Certainty Equivalent (CE) LQ
optimal controller, obtained by first learning a nominal
estimate of the system dynamics, and then computing an
optimal controller assuming these estimates describe the true
behavior of the system. For the model-free method, we use
the direct policy gradient (DPG) method suggested in [8].
We apply these methods on a simple toy model that is open-
loop unstable, and that is parameterized by a scalar that can
be used to vary the controllability of the system (with loss of
controllability mimicking the unstable pole/zero cancellation
mentioned above) and instability of the system. In this way,
our toy model captures the essence of the aforementioned
fundamental limits, while still being intuitive, simple, and
amenable to exhaustive numerical search.

Given that for the systems considered, even an optimal
controller performs poorly, our focus is less on sample
efficiency and performance (although we do comment on
these when appropriate), but rather on fault diagnosis. In
particular, given the behavior of either a CE or DPG derived
controller, can diagnostic insights be drawn from the data
as to the cause of poor performance, i.e., can data-driven
methods be used to identify if the system is uncontrollable?
Such insights are valuable from an engineering perspective,
as they suggest that poor performance is due not a bad
control policy, but rather to a fundamental limit of the system
being controlled and its control architecture (i.e., sensing and
actuation).

The rest of this paper is structured as follows. In section
II, we describe the experimental system and control synthe-
sis methods in detail. In section III-A, we show that the
fundamental performance limits set by model-based control
theory are indeed observed in our toy system. In section
III-B, we present an unexpected phenomenon observed in
the model-based experiments, which exposes an inherent
vulnerability to control errors and which arises in the process

Fig. 1: Optimal infinite time LQ state feedback cost as a
function of α. Choices of 3 α values for detailed study are
highlighted. These values differ by 400x in α and by 10x in
cost.

of identifying system dynamics. Finally, we conclude with a
short discussion of the many research questions evoked by
this simple empirical study.

II. METHODS

A. System Model

We ran experiments on the simple dynamical feedback
system (1). This system has a tunable parameter, α, which
sets performance limits on any controller.

xt+1 =

[
1 + α 0

0 1

]
xt +

[
1
1

]
ut + wt (1)

where wt ∼ N (0, Σ), Σ = σ2I , σ = 0.4, and

ut = K(x0:t, u0:t) (2)

We generate the control function K by a variety of
methods, with varying degrees of prior information about
the true system dynamics (see section II-B for more details).
To evaluate the performance of any controller, we use the
standard LQ cost of the state and control input:

Jinf = Ew lim
T→∞

1

T

T−1∑
t=0

(||xt||2 + u2t ) (3)

where the expectation is taken over Gaussian-distributed
disturbances to the dynamics.

With decreasing α the system becomes increasingly harder
to control until at α = 0 it becomes uncontrollable2 (and in
fact, unstabilizable). On the other end, as α increases, the
system becomes more and more unstable. In both extremes,
the optimal LQG control cost degrades (see Figure 1).

To further simplify our experimental setting, we chose
three values of α, which represent the three qualitative

2as measured by σmin(ΛC), the minimum singular value of the control-
lability Gramian



regions of control challenges: an uncontrollable regime, a
benign regime, and an unstable regime. In both the un-
controllable and unstable regimes, we chose a value of α
with a roughly 10x performance degradation compared to
the benign regime (see Figure 1).

This system is intended to be almost trivially simple
to highlight surprising subtle questions, if not complete
answers. The impulse responses of each system can be
visualized on two plots (see Appendix, Figure 9). We can
analytically derive and visualize the space of stabilizing
controllers on a single plot (see Appendix, Figure 6). We
can easily solve for the optimal controller and the optimal
infinite horizon cost (see Figure 1). We can easily do system
ID from data using simple least squares, and with certainty
equivalence (IDCE), control works surprisingly well. And we
can easily explore a variety of RL methods. Nevertheless, the
seemingly simple problem of finding data-driven mechanistic
explanations when control is unavoidably bad is rich and has
surprising twists. This is emphatically not the last word on
this subject but a tentative early exploration.

B. Control Methods

1) Direct Policy Gradient (DPG): We explored the per-
formance of the simple model-free policy gradient method
from [8]. This algorithm collects simulated trajectories on the
system (1) (aka rollouts), with Gaussian noise (with variance
σ2
η) injected into the control signal. These trajectories, and

their associated LQ costs, are used to construct a gradient of
the constant K, which is then used to implement stochastic
gradient descent. Rather than directly optimizing the LQ cost
function, this process biases the controller towards policies
with lower cost. No estimates of A or B are explicitly
constructed.

This method requires an initial stabilizing controller K0.
Using the stabilizing regions found in Figure 6, an initial
K0 was manually chosen for each α such that the infinite
horizon LQ cost that it achieved was one order of magnitude
above the optimal cost for that α. Choosing such a family
of K0’s allows us to explore the optimal performance of this
method with relatively little sensitivity to hyperparameters.

To tune the hyperparameters, we searched over a grid of
the controller noise ση = [1e-4, 1e-3, 1e-2, 0.1, 0.2, 0.3],
the step size µ=[1e-7, 1e-6, 1e-5, 1e-4, 1e-3], as well as
the time horizon of the rollouts T = [5, 10, 15, 25, 50,
100] (while adjusting the number of iterations as to keep the
total number of data points fixed). From this procedure, we
chose hyperparameters that produced a stabilizing controller
for 100 percent of trials, and then optimized for final cost.
This procedure resulted in a time horizon of T=5 for all α’s,
and (ση, µ)=(0.3, 1e−6) for α=0.02, (0.3, 1e−5) for α=0.6,
and (0.2, 1e− 7) for α=8.0.

2) Least Squares ID and Certainty Equivalent LQ (IDCE),
with or without Priors: Next, we consider a naive Ordinary
Least-Squares system identification (ID) process coupled
with a standard certainty equivalent LQ control synthesis
procedure. In this method, data is collected by simulating

trajectories of the dynamical system (1) when Gaussian-
distributed noise is injected into the control input. Least-
Squares estimates of the system parameters Â and B̂ are
made from the trajectories according to:

(Â, B̂) = argminA,B

N∑
i=1

T−1∑
t=0

||xit+1 −Axit −Buit||2 (4)

These estimates are used for the standard LQ controller
synthesis procedure:

K = −(R+BTPB)−1BTPA (5)

where P is the solution to the Discrete Algebraic Riccati
Equation. This entire procedure can be carried out with
a varying degree of prior assumptions about the system
parameters A and B. In the “no priors” setting, the full (Â,B̂)
are estimated from data. In the “priors” setting, only the value
of α is estimated, while the rest of the structure of (A, B)
is fixed. To test the performance of the controllers, infinite
horizon LQ cost are evaluated on the true system (A,B) and
the ID’d system (Â, B̂).

The following hyperparameters were used: For the ID
process, time horizon of T = 60 was used for α = 0.02,
and T = 8 was used for α = 0.6, 8; maximum N = 60
trajectories were used for α = 0.02, while maximum N =
130 was used for α = 0.6, 8. To observe the amount of
data necessary for convergence in performance, the IDCE
procedure was repeated on the subset of the whole data set.
100 trials were performed for the procedure above for each
α.

III. RESULTS

A. Lower Bounds on Data-Driven Control Performance: You
can be stumped

In both DPG and IDCE methods, we find that with a
sufficient amount of data, performance converges to the opti-
mal LQ control performance (See Figures 2 and 3). Though
perhaps unsurprising, this highlights an important problem:
without theoretical bounds to compare performance with,
someone using a data-driven method on a plant with intrin-
sically poor performance (e.g. in the α=0.02 uncontrollable
or α=8.0 unstable cases) would not be aware that they were
performing optimally, and might blame poor performance on
their algorithm, when the plant itself is actually at fault.

In the DPG setting (Figure 2), the convergence rates
depend heavily on hyperparameter choices. Our choice was
conservative: we required that 100% of controllers produced
by the algorithm were stabilizing throughout. When this
constraint is relaxed, the controllers which do converge can
do so much more quickly. We do see convergence towards
the optimum, but due to this hyperparameter sensitivity, we
will not comment on its convergence rates.

On the other hand, in the IDCE (with no priors3) setting
(Figure 3) we see clear trends in convergence that we can

3IDCE with prior information performed qualitatively similarly to the no
priors case, but with much less data required, as illustrated in the Appendix,
Figure 7.



Fig. 2: For each α, the LQ control performance achieved by
DPG approaches near optimal (shown in dashed lines) over
the course of training. The solid line is the median cost for
100 randomly seeded trials, and the shading indicates 10%
to 90% quantiles.

reasonably understand from the system properties. In the be-
nign regime (green), the IDCE method converges quickly to
the optimum. In both the unstable (blue) and uncontrollable
(red) regimes, we see a slower rate of convergence towards
their optimal LQ costs, but much more dramatically so in
the uncontrollable case (note the scale of the LQ cost axes).
It is important to emphasize however that using rich priors
can vastly improve every aspect of this problem (as long as
the priors are correct), as we see in the Appendix, Figure 7.

In the in the α=0.02 uncontrollable or α=8.0 unstable
cases, IDCE provides a plant estimate (Â, B̂) which can
be used to infer the controllability of the true model (by
measuring σmin(ΛC), the minimum singular value of the
Controllability Gramian), to help explain the high LQ cost.
Because the model-free DPG setting provides no such esti-
mate, no diagnostic would be available to explain the poor
control performance.

B. True cost vs. ID’d cost: Fooled by a smile?

There are two approaches to control performance eval-
uation: the controller can be evaluated by its performance
on the true system’s dynamics (in the IDCE setting, we
referred to this as the “true LQ performance”), but this is
only possible in sufficiently representative model systems, in
simulations with sufficient data & computational resources,
or in physical experimental systems which can tolerate a
sufficient amount of failure for repeated experimentation.
Since these requirements may be too restrictive, another
approach to performance evaluation is to leverage estimated
models of system dynamics to (hopefully) approximate the
true cost.

In the IDCE setting, we can measure the performance of
controllers using the ID’d system dynamics (Â, B̂) in place
of the true (A,B) within the CE control synthesis procedure
(5) (referred to as “ID’d LQ performance”). However, an

Fig. 3: The true LQ cost achieved by IDCE also approaches
optimal when exposed to a sufficient amount of data. Note
the very different axes, indicating the relative difficulty of
IDing the .02 case. The solid line is the median cost for
100 randomly seeded trials, and the shading indicates 10%
to 90% quantiles.

potential problem occurs when using the ID’d performance
metric on the IDCE method: we observe cases in which the
ID’d cost metric reports costs well below the optimal (see
Figure 4).

To explore this phenomenon further, the true LQ cost was
plotted against the ID’d LQ cost for the system α = 0.02,
where the phenomenon was most dramatic. We see that
the true vs. ID’d cost forms a “smile” shape, which is
approximately quadratic on a loglog scale (see Figure 5,
plot 1). The left half of the “smile” contains controllers
whose ID’d costs are smaller than their true costs (i.e.
plant estimates that are overly optimistic about their control
performance), while the right half of the the “smile” contains
the reverse (i.e. plant estimates that are overly pessimistic).
(See Appendix, section D for a discussion on the origins of
the “smile” shape.)

We plotted these “smiles” as a function the amount of
IDCE training data (see Figure 5, plots 1-4). As the IDCE
is exposed to more data, it improves its estimate of the
plant dynamics, and we see that the “smile” curve narrows
towards a more accurate estimate of the LQ cost. This, in
conjunction with the convergence rates of the benign and



unstable cases in Figure 4, highlights a property of the
(nearly) uncontrollable plant: a relatively large amount of
data is needed to confidently verify that the controller has
poor performance4.

Even worse, any single plant estimate can be actively
misleading, with extreme consequences. Early in the training
process, without a sufficient amount of data to ID the dynam-
ics, the IDCE yields many unstable closed-loop controllers
(see the black X’s in Figure 5, plot 1). Most of the unstable
controllers lie far in the left half of the “smile”, indicating
that the estimated cost is lower than the true optimal cost.
This result is particularly alarming: the controllers which
appear to be performing best early on are actually performing
the worst. a

IV. CONCLUSION

In this paper, we carried out an empirical study of a simple
state feedback system to explore the effects of uncontrollabil-
ity and instability on the LQ performance achieved by two
data-driven methods. We demonstrated that the model-free
DPG method was able to produce near-optimal controllers,
but argued that it provides no diagnostics for poor perfor-
mance (in the unstable or uncontrollable settings), and that
model-based methods would be required to provide any kind
of lower bound for performance. In the model-based IDCE
setting, we also explored a practically relevant performance
metric, the ID’d LQ cost. We demonstrated that, in an
uncontrollable setting, this metric is slow to gain confidence
in its system estimate (in comparison to the controllable
settings). Using our knowledge of the true LQ performance,
we showed a weakness when there is limited data in the
ID’d LQ performance metric, which can lead to deceivingly
optimistic assessments of bad control performance.

This simple empirical setting has set the stage to think
about broader research questions, towards the ultimate goal
of providing model-free methods with plant diagnostics (akin
to those provided by robust control). Here, we highlight a few
specific topics for further exploration:
• In this setting, IDCE works well at efficiently finding

good controllers, but could be vastly improved in ex-
plaining bad ones, if that objective was considered at
the ID stage. Could data-driven performance metrics
be developed to give early warning that a plant is
bad? For example, given that “smiles” exist, could we
leverage that knowledge to better estimate our true cost,
particularly when it is bad?

• We used RL here in a purely MF mode, but there are
MB versions that might blend well with more Robust-
Control-like analysis, see [6] for example.

• We focused on minimal RL and simplified RCT ideas
here to maximize accessibility to audiences in both
Control and Learning, but related control fields like

4Intuitively, an uncontrollable state will grow according to the distur-
bances it experiences in its uncontrollable mode. For systems with Gaussian
noise into one uncontrollable mode, the expected state deviation grows like√

(t). This relatively slow-growing error signal takes a large amount of
time/data to appear.

Fig. 4: The ID’d LQ cost achieved by IDCE also approaches
optimal when exposed to a sufficient amount of data, but
this metric requires much more data to converge than when
using the true LQ cost. Additionally, this cost metric, which
is meant to approximate the true LQ cost, can be overly
optimistic, since it frequently reports costs below optimal
(which we know to be impossible). Again, note the extremely
different axes in these plots, indicating the extreme relative
difficulty of the uncontrollable (low α) case. The solid line
is the median cost for 100 randomly seeded trials, and the
shading indicates 10% to 90% quantiles.

system ID, adaptive control, fault and failure diagnosis,
and model based systems engineering (MBSE) all have
vast literatures relevant to diagnosing bad cost control
and sophisticated use of data and models. Could we
leverage any of this work to provide more general
solutions to the problem of identifying bad plants from
data?

• The example here had almost trivial mechanisms for
high costs and everything depended crucially on state
feedback and linearity. Much more interesting hard lim-
its arise in output feedback and also localized, delayed,
and distributed settings, and with nonlinearities, most
importantly actuator saturation. How could the methods
here be upgraded to deal with these generalities?

• One specific toy system that may be fruitful in extending
this work to more relevant settings (and which inspired
this paper’s choice of plant), is the standard stick on



Fig. 5: Comparison of True LQ costs and ID’d LQ costs, for
100 trials of IDCE control synthesis on a near-uncontrollable
plant (α=0.02). Each plot shows the performances of each
controller K as the amount of training data increases, with
the optimal LQ controller’s cost shown in a dashed line.
Black X’s denote infinite true costs for K’s that do not
stabilize the plant. With enough data, both true and ID’d
LQ costs converge towards the true optimal cost (as seen
in Figures 3 and 4), but the ID’d cost does not converge
as quickly as evident by the spread in the x-direction (the
“smile” shape) which persists through all amounts of training
data. The presence of any points to the left of the vertical
optimal line demonstrates that the ID’d LQ cost metric can
be deceivingly optimistic, since the true cost is above the
horizontal optimal line.

an actuated cart with enough sensors to have full state
feedback. This plant can be made more and more unsta-
ble by shortening the stick length, and it can be made
uncontrollable by adding a second stick and varying the
relative stick lengths. Since this system has analogous
configurations to this paper’s toy system, and because is
is physically amenable to adding properties like delayed
or quantized actuation, this provides a logical next step
for generalizing this type of problem’s results.
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Fig. 6: Stabilizing controllers for the plant under investi-
gation (1), indicated by stars, presented in the space of
K = [K1,K2]. For reference, the highly uncontrollable (red,
α=0.02) and highly unstable (green, α=8.0) plant both have
LQ control costs that are 40x worse than the “mild” (blue,
α=0.6) plant.

APPENDIX

A. Stable Regions for Controllers K

Using Jury’s criterion, the space of stabilizing controllers
K = [K1,K2] can be derived analytically. The resultant
inequalities are

αK2 > 0
2K1 + (α+ 2)K2 + 2α+ 4 > 0
K1 +K2 + αK2 + α < 0

(6)

and are plotted for the three chosen values of α in Figure 6.

B. Impulse Responses for System (1)

To better visualize the dynamics of system (1) with
feedback from its optimal controller K∗, we show impulse
responses, generated by SciPy’s signal processing toolkit.
See Figure 9.

C. Performance of IDCE with Priors

Though the performance of the IDCE method in the “with
priors” setting is qualitatively similar to the “no priors”
setting, we show one example of its performance, for the
system with α=0.02 to demonstrate that it is qualitatively
similar, but unsurprisingly, that it performs better than the
IDCE setting without priors. See Figure 7.

D. “Smile” experiments

When looking at plots of true LQ cost vs ID’d LQ cost,
one might initially expect that the true cost should cluster
around a vertical line, or perhaps spread in a more uniform
distribution above the optimal performance line. The fact that
the errors in ID’d cost form such a strong trend suggests that
we might be able to better understand the ID’d LQ cost as
it relates to some underlying property of IDCE’s controller
synthesis method.

Fig. 7: In the IDCE setting which includes priors on the
structure of the plant, both the true LQ cost and the ID’d LQ
cost converge towards the optimal, but faster than the IDCE
setting without priors. The α=0.6,8.0 figures were omitted,
as they both converged so quickly that they appear as lines
(much like the true LQ performance plot here). The solid
line is the median cost for 100 randomly seeded trials, and
the shading indicates 10% to 90% quantiles.

Fig. 8: Comparison of True LQ costs and ID’d LQ costs, for
100 controllers K̃ on a near-uncontrollable plant (α=0.02).
K̃’s were generated by adding small Gaussian noise to the
true plant matrices, and using these random plants (Ã, B̃)
in the standard control synthesis procedure (5). Since the
“smile” trend from Figure 5 persists, we can conclude that
the IDCE plant estimation step does not contribute to the
form of the “smile”, and that this shape must result from the
properties of the LQ control procedure.

To explore whether the underlying ID process has any
effect on the “smile”, we generated plants (Ã, B̃) according
to a normal distribution centered around the true plants, with
a variance of 0.0052, and generated controllers K̃ from each
of those systems using the control synthesis procedure (5).
We found the same “smile” trend (see Figure 8), indicating
that this trend is not intrinsic to the IDCE’s ID process,
but merely a consequence of the trends in LQ control costs
for controllers that are near optimal. See [12], particularly
section V.C., for a theoretical discussion of regret (upper)
bounds for uncertain plants.



Fig. 9: Closed-loop impulse responses of the system (1) with the optimal controllers for each value of α. w1 is the impulse
into the first state of the system, while w2 is into the second. The α=0.02 and α=8.0 cases have roughly equal cost but very
different transients, and much larger cost than α=0.6. Note that α=0.02 has the same initial transient as α=0.6 but slower
settling, which hints that making diagnosis of the large cost might require more data for the α=0.02 plant.


