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1 Preliminaries

1.1 Gaussian Random Vectors

Definition 1. Random vector x ∈ Rn is Gaussian if it has density

px(v) =
1√

(2π)n det(Σ)
exp

(
−1

2
(v − µ)>Σ−1(v − µ)

)
(1)

for some Σ = Σ> � 0, and µ ∈ Rn.

We will write a Gaussian random vector as:

x ∼ N (µ,Σ).

Vector µ ∈ Rn is the mean or expected value of x and is defined as

µ = Ex =

∫
vpx(v) dv (2)

and the matrix Σ is the covariance matrix of x, given dy

Σ = E
[
(x− µ)(x− µ)>

]
= E[xx>]− Exµ> − µEx> + µµ> = E[xx>]− µµ> =

∫
vpx(v) dv (3)

Variables µ and Σ determine the shape of density. Graphical representation of the probability density
function for x ∼ N (0, 1) is given in a Figure 1.

Figure 1: Probability density function for x ∼ N (0, 1).

Example 1. x ∼ N (0, I) means xi are independent identically distributed (IID) random variables N (0, 1).

Definition 2. Mean (norm) square deviation of x from µ is1

E||x− µ||2 = ETr(x− µ)(x− µ)> = Tr Σ =

n∑
i=1

Σii (4)

1Using TrAB = TrBA.

1
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1.2 Confidence Ellipsoids

Using Equation (1) it is easy to show that px(v) is constant for (v− µ)>Σ−1(v− µ) = α, i.e., on the surface
of the ellipsoid

Eα := {v | (v − µ)>Σ−1(v − µ) ≤ α}. (5)

Definition 3. η-confidence set for random variable z is the smallest volume set S such that

P [z ∈ S] ≥ η. (6)

Definition 4 (Confidence Ellipsoids). For Gaussian random variables, the Eα are the η-confidence sets
(using Equation (5)), and are called confidence ellipsoids, where α determines confidence level η.

Mean µ gives the center of the ellipsoid Eα, and semiaxes are defined as
√
αλiui, where ui are orthonormal

eigenvectors of Σ with eigenvalues λi.

1.2.1 Confidence Levels

Notice that since x is a Gaussian random variable and Σ � 0, the non-negative random variable (x −
µ)>Σ−1(x − µ) has a χ2

n distribution2, with a CDF Fχ2
n
(α). Hence, using the above confidence ellipsoid’s

definition 4, P [x ∈ Eα] = Fχ2
n
(α).

Some good approximations are:
• En gives about 50% of probability mass.
• En+2

√
n gives about 90% of probability mass.

Example 2. Let x ∼ N (µ,Σ) with µ =

[
2
1

]
and Σ =

[
2 1
1 1

]
. Then 90% confidence ellipsoid corresponds to

α = 4.6, see Figure 2. In this experiment, 91 out of 100 samples fall in E4.6.

Figure 2: Confidence ellipsoid Eα for α = 4.6.

1.3 Affine Transformations

Suppose that x ∼ N (µ,Σx). Consider an affine transformation of x: z = Ax+ b, where A ∈ Rm×n, b ∈ Rm.
Then z is Gaussian with mean

z̄ = Ez = E(Ax+ b) = AEx+ b = Aµ+ b, (7)

2Chi-squared distribution χ2
n is the distribution of a sum of the squares of n independent standard normal random variables,

https://en.wikipedia.org/wiki/Chi-squared_distribution

https://en.wikipedia.org/wiki/Chi-squared_distribution
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and covariance
Σz = E

[
(z − z̄)(z − z̄)>

]
=

= E
[
(Ax+ b−Aµ− b)(Ax+ b−Aµ− b)>

]
=

= AE [(x− µ)(x− µ)>]A> =

= AΣxA
>

(8)

Example 3. For w ∼ N (0, I) and x = Σ1/2w+µ, we have x ∼ N (µ,Σ). Useful for simulating vectors with
given mean and covariance

Example 4. Conversely, for x ∼ N (µ,Σ) and z = Σ−1/2(x − µ), we have x ∼ N (0, I). So it normalizes
and decorrelates. Called whitening or normalizing.

Example 5. For x ∼ N (µ,Σ) and c ∈ Rn scalar c>x ∼ N (c>µ, c>Σc). This means that we can identify
unit length direction of minimum (maximum) variability for x by selecting the orthonormal eigenvector u
corresponding to the minimum (maximum) eigenvalue λmin (λmax)of Σ:

Σu = λu, ||u|| = 1. (9)

Standard deviation of u>n x is
√
λmin.

1.4 Linear Measurements

Suppose that we obtain liear measurements with noise y = Ax+v, where x ∈ Rn is what we want to estimate,
y ∈ Rm is a measurement, A ∈ Rm×n characterizes sensors or measurements and v is a sensor noise. We
also assume that x ∼ N (x̄, Σx), so the prior distribution of x that describes initial uncertainty about x is
given. Another assumption is v ∼ N (v̄, Σv), where v̄ is noise bias or offset and Σv is noise covariance. x
and v are assumed to be independent. Then we have[

x
v

]
∼ N

([
x̄
v̄

]
,

[
Σx

Σv

])
. (10)

We can write

E
[
x
y

]
=

[
x̄

Ax̄+ v̄

]
(11)

because [
x
y

]
=

[
I 0
A I

] [
x
v

]
(12)

Therefore,

E

[[
x− x̄
y − ȳ

] [
x− x̄
y − ȳ

]>]
=

[
I 0
A I

] [
Σx

Σv

] [
I 0
A I

]>
=

[
Σx ΣxA

>

AΣx AΣxA
> + Σv

]
(13)

We showed that the covariance of measurement y is AΣxA
> + Σv, where first term AΣxA

> is called signal
covariance and second term Σv, as mentioned before, noise covariance.

1.5 Minimum Mean Square Estimation

Let x ∈ Rn and y ∈ Rm be random vectors (not necessarily Gaussians). We seek to estimate x given y, thus
we seek a function φ : Rm → Rn such that x̂ = φ(y) is ‘near’ x. A common criterion is to seek to minimize
the mean square estimation error be finding a map φ as follows:

φmmse(y) = arg minE||φ(y)− x||22. (14)
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A general solution to this problem is given by the conditional expectation of x given y:

φmmse(y) = E[x|y]. (15)

Such φmmse is called minimum mean-square estimator (MMSE estimator).
If (x, y) are jointly Gaussian, i.e., if[

x
y

]
∼ N

([
x̄
ȳ

]
,

[
Σx Σxy
Σ>xy Σy

])
, (16)

then the conditional density is

px|y(v|y) =
1√

(2π)n det(Λ)
exp

(
−1

2
(v − w)>Λ−1(v − w)

)
, (17)

where Λ = Σx − ΣxyΣ−1y Σ>xy and W = x̄ + ΣxyΣ−1y (y − ȳ). Hence MMSE estimator (i.e., conditional
expectation) is

x̂ = φmmse(y) = E(x|y) = x̄+ ΣxyΣ−1y (y − ȳ) (18)

so φmmse is an affine function. MMSE estimation error, x̂− x, is a Gaussian random vector

x̂− x ∼ N
(
0, Σx − ΣxyΣ−1y Σ>xy

)
. (19)

Note that Σx − ΣxyΣ−1y Σ>xy ≤ Σx, i.e. covariance of estimation error is always less than prior covariance of
x, measurements decrease the variance of our estimation error.

Example 6. If measurements are linear y = Ax + v, x ∼ N (x̄, Σx) and v ∼ N (v̄, Σv), with x and v
independent, we obtain the MMSE as an affine function

x̂ = x̄+B(y − ŷ) = x̄+ ΣxA
>(AΣxA

> + Σv)
−1(y −Ax̄− v̄). (20)

Before measurement, x̂ is the best prior guess of x. The difference y− ŷ is the discrepancy between what we
actually measure (y) and the expected value of what we measure (ŷ). Estimator modifies prior guess by B
times this discrepancy, estimator blends prior information with measurement. B gives gain from observed
discrepancy to estimate. Also note, that B is small if noise term Σv in ‘denominator’ is large.

2 Gaussian Processes

Gaussian processes3 (GPs) generalize the concept of a Gaussian distribution over discrete random variables
to the idea of a Gaussian distribution over continuous functions and inference taking place directly in the
space of functions. GPs seen a lot of use in safe learning and control applications because of their ability to
track the evolution of both the mean and covariance of the distribution. Hence, they allow for uncertainty
quantification.

Definition 5. A Gaussian Process (GP) is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

Same as its finite dimensional counterpart, a GP is completely specified by its mean function and covari-
ance function.

Definition 6. For a real process f(x) a mean function m(x) and a covariance function k(x, x′) are defined
as:

m(x) = E[f(x)]

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))]

and we will write a GP as
f(x) ∼ GP(m(x), k(x, x′)) (21)

3This section was adapted from [1], Chapter 2.
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Example 7 (Bayesian linear model). Consider a linear regression model f(x) = φ(x)>w for x ∈ Rn,
φ(x) : Rn → Rp and prior w ∈ Rp, w ∼ N (0,Σp). Then f(x) defines a GP with

E[f(x)] = φ(x)E[w] = 0

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>Σpφ(x′)

Thus, f(x) and f(x′) are jointly Gaussian with zero mean and covariance given by φ(x)>Σpφ(x′).
In fact, the function values f(x1), . . . , f(xn), for any number n > 0, are jointly Gaussian. However, if

p < n then this Gaussian is singular.

Our running example of a covariance function will be the squared exponential (SE) or a Radial Basis
Function (RBF):

cov(f(xp), f(xq)) = k(xp, xq) = exp

(
−1

2
||xp − xq||22

)
(22)

Note, that the covariance between the outputs is written as a function of the inputs. This covariance function
(or kernel) corresponds to a linear model with an infinite number of basis functions (see Section 4.3.1 in [1]),
this avoiding the singularity issues raised in the above example.

2.1 Predictions. Sampling from a GP

For simplicity, we will assume that m(x) = 0 (not necessary). Thus, the GP is fully defined by the specified
covariance function. If one specifies a set of input points X∗ = (X1

∗ , . . . , X
n
∗ ), and constructs the kernel

matrix K(X∗, X∗), it is possible to generate a sample function at these inputs by simply drawing f∗ ∼
N (0,K(X∗, X∗)). You can see such example in a Figure 3a. Here we plot 3 different function realizations
at 50 points sampled from a GP with SE kernel from eq. (22).
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Figure 3: Panel (a) shows three functions drawn at random from a GP prior; the dots indicate values of y
actually generated by GP; the two other functions (in red and green) have been drawn as lines by joining a
large number of evaluated points. Panel (b) shows three random functions drawn from the posterior, i.e. the
prior conditioned on the four noise free observations marked with cross symbols. In both plots the shaded
area represents the pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.
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2.1.1 Predictions from noise free observations

We are usually not primarily interested in drawing random functions from the prior, but want to incorporate
the knowledge that the training data provides about the function. Initially, we will consider the simple
special case where the observations are noise free, that is assume we are provided with a sample set:

S = {(xi, f(xi)) | i = 1, . . . , n}.

According to the GP prior, the joint distribution of the training outputs given by f = (fi) = (f(xi)), and
the test outputs f = f(x∗) is defined by[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(23)

If there are n training points and n∗ test points then K(X,X∗) denotes the n×n∗ matrix of the covariances
evaluated at all pairs of training and test points, and similarly for the other entries K(X,X) ∈ Rn×n,
K(X∗, X∗) ∈ Rn∗×n∗ and K(X∗, X) ∈ Rn∗×n.

To get the posterior distribution over functions we need to restrict this joint prior distribution to contain
only those functions which agree with the observed data points, i.e. we need to take conditional expectation.
The multivariate Gaussian distribution has the property that any conditional distribution is also Gaussian.
Therefore, the distribution f∗|X∗, X, f can be fully described with a mean and covariance matrix. We can
describe that mean and covariance using the standard multivariate Gaussian conditional formula:

Lemma 1. Function values f∗ corresponding to test inputs X∗ can be sampled from the joint posterior
distribution by evaluating the mean and covariance matrix as following:

f∗|X∗, X, f ∼ N
(
K(X∗, X)K(X,X)−1f, K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

)
. (24)

Proof. See Appendix A.1.

Figure 3b shows the results of these computations given the four data points marked with cross symbols.
Note, that the formula (24) is the same formula (29) with Σx = K(X∗, X∗), Σxy = K(X∗, X), Σy =

K(X,X).

2.1.2 Predictions from noisy observations

It is typical for more realistic modeling situations that we do not have access to function values f(x)
themselves, but only noisy versions of the form y = f(x) + ε. Assuming additive independent identically

distributed Gaussian noise, ε
i.i.d∼ N (0, σ2

n), then the prior on the noisy observations becomes

cov(yp, yq) = k(xp, xq)) + σ2
nδpq (25)

where δpq is a Kronecker delta which is one iff p = q and zero otherwise. Equivalently, using the matrix
notation the above equation can be written as

cov(y) = k(X, X) + σ2
nI (26)

It follows from the independence assumption about the noise, that a diagonal matrix is added, in comparison
to the noise free case, eq. (22). Introducing the noise term in eq. (23) we can write the joint distribution of
the observed target values and the function values at the test locations under the prior as[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(27)
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Deriving the conditional distribution corresponding to eq. (24) we arrive at the key predictive equations for
Gaussian process regression

f∗|X∗, X, y ∼ N
(
f̄∗, cov(f∗)

)
, where

f̄∗ = µf∗ = K(X∗, X)
[
K(X,X) + σ2

nI
]−1

y

cov(f∗) = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗)

(28)
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Figure 4: Observations with noise, σn = 0.2: Panel (a) shows three random functions drawn from the noisy
posterior, i.e. the prior conditioned on the four observations with noise marked with cross symbols. Panel
(b) shows the underlying signal sin(x) and the predicted mean f̄∗ signal.
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Figure 5: Observations with noise, σn = 0.4: Panel (a) shows three random functions drawn from the noisy
posterior, i.e. the prior conditioned on the four observations with noise marked with cross symbols. Panel
(b) shows the underlying signal sin(x) and the predicted mean f̄∗ signal.

Consider the data given by y = f(x) + ε for σn = 0.2 in a Figure 4 and σn = 0.4 in a Figure 5,
correspondingly. Subplot (a) in both figures present three realizations from posterior distribution, and
subplot (b) draws the underlying signal f(x) = sin(x) and predicted mean signal µf∗ . The figures also show
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the 2 standard-deviation error bars. Notice how the error bars get larger in sampled points as the variance
σn gets higher (σn = 0.2 in Figure 4 in comparison with σn = 0.4 in Figure 5).

Note that the variance in eq. (28) does not depend on the observed targets y, but only on the inputs
X and X∗. This is a property of the Gaussian distribution. The variance is the difference between two
terms: the first term K(X∗, X∗) is simply the prior covariance. From that is subtracted a (positive) term,
representing the information the observations gives us about the function. We can very simply compute the
predictive distribution of test targets y∗ by adding σ2

nI to the variance in the expression for cov(f∗).
Let us now examine f∗ evaluated at a single test point x∗. Then K(x∗, X) is a vector [k(x∗, xi)]i=1,...,n

and

f̄∗(x∗) =

n∑
i=1

αik(x∗, xi), (29)

for α = [K(X,X) + σ2
nI]−1y. So it as a linear combination of n kernel functions, each one centered on a

training point. The fact that the mean prediction for f(x∗) can be written as eq. (29) despite the fact that
the GP can be represented in terms of a possibly infinite number of basis functions is one manifestation of
the representer theorem, see Section 6.2 in [1].

2.2 Gaussian Process Regression as Linear Smoother

GP regression aims to reconstruct the underlying signal f by removing the contaminating noise ε4. To do
this it computes a weighted average of the noisy observations y as

f̄∗(x∗) = k(x∗)
>(K + σ2

nI)−1y (30)

as f̄∗(x∗) is a linear combination of the y values, GP regression is a linear smoother [2].
The predicted mean values f̄ at the training points are given by

f̄ = K(K + σ2
nI)−1y, for K = K(X,X) (31)

Let K have the eigendecomposition

K =

n∑
i=1

λiuiu
>
i (32)

where λi is the i-th eigenvalue and ui is the corresponding eigenvalue. As K is real and symmetric positive
semidefinite, its eigenvalues are real and non-negative, and its eigenvectors are mutually orthogonal. Let
y =

∑n
i=1 γiui for some coefficients γi = u>i y. Then

f̄ =

n∑
i=1

γiλi
λi + σ2

n

ui. (33)

Note that
• if λi � σ2

n then summand term ≈ 0, so the component in y along ui is effectively eliminated.
• if λi � σ2

n then summand term ≈ 1, so the component is not eliminated.
Therefore, for most covariance functions that are used in practice the eigenvalues are larger for more slowly
varying eigenvectors (e.g. fewer zero-crossings). This means that high-frequency components in y are
smoothed out. It acts as a filter, letting through only those “terms above the noise”.

3 Non-zero mean GPs: Incorporating Explicit Basis Functions

It is common but not necessary to consider GPs with a zero mean function5. Note that this is not necessarily
a drastic limitation, since the mean of the posterior process is not confined to be zero. Yet there are several

4This section was adapted from Section 2.6 in [1].
5This section was adapted from Section 2.7 in [1].
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reasons why one might wish to explicitly model a mean function. The use of explicit basis functions is a way
to specify a non-zero mean over functions.

Using a fixed (deterministic) mean function m(x) is trivial: Simply apply the usual zero mean GP to the
difference between the observations and the fixed mean function. With

f(x) ∼ GP(m(x), k(x, x′)) (34)

the predictive mean becomes

f̄∗ = m(X∗) +K(X∗, X)
[
K(X,X) + σ2

nI
]−1

(y −m(X)) (35)

and the predictive variance cov(f∗) remains unchanged from eq. (28).
However, in practice it can often be difficult to specify a fixed mean function. In many cases it may be

more convenient to specify a few fixed basis functions, whose coefficients, β, are to be inferred from the data.
Consider

g(x) = f(x) = h(x)>β, where f(x) ∼ GP(0, k(x, x′)), (36)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions (for example, polynomial h(x) =
(1, x, x2, . . .)), and β are additional parameters. This formulation expresses that the data is close to a global
linear model with the residuals being modelled by a GP. When fitting the model, one could optimize over the
parameters β jointly with the hyperparameters of the covariance function. Alternatively, if we take the prior
on β to be Gaussian, β ∼ N (b, B), we can also integrate out these parameters. Following [3], the obtained
GP is

g(x) ∼ GP(h(x)>b, k(x, x′) + h(x)>Bh(x′)). (37)

The contribution in the covariance function caused by the uncertainty in the parameters of the mean. If we
plug in the mean and covariance functions of g(x) into eq. (36) and (28), we obtain

ḡ(X∗) = H>∗ β̄ +K>∗ K
−1
y (y −H>β̄) = f̄(X∗) +R>β̄, (38)

cov(g∗) = cov(f∗) +R>(B−1 +HK−1y H>)−1R (39)

where the H matrix collects the h(x) vectors for all training cases, H∗ collects all test points, and β̄ and R
are defined as

β̄ = (B−1 +HK−1y H>)−1(HK−1y y +B−1b)

R = H∗ −HK−1y K∗.
(40)

The interpretation of the mean expression β̄ , eq. (38): is the mean of the global linear model parameters,
being a compromise between the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance cov(g∗), eq. (39), is the sum of
the usual covariance term cov(f∗) and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the β parameter becomes vague, B−1 → O
(where O is the matrix of zeros), we obtain a predictive distribution which is independent of b

ḡ(X∗) = f̄(X∗) +R>β̄, (41)

cov(g∗) = cov(f∗) +R>(HK−1y H>)−1R, (42)

where the limiting β̄ = (HK−1y H>)−1HK−1y y.
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A Appendix

A.1 Partitioned Gaussian Densities

Theorem 1. [4] Let the random vector x be Gaussian x ∼ N (µ,Σ) with mean and variance as following

µ =

[
µa
µb

]
, Σ =

[
Σaa Σab
Σ>ab Σbb

]
, (43)

then the conditional density p(xa|xb) is given by

p(xa|xb) = N (µa|b, Σa|b, ) (44)

where

µa|b = µa + ΣabΣ
−1
bb (xb − µb) (45)

Σa|b = Σaa − ΣabΣ
−1
bb Σ>ab (46)

Proof. We will make use of the fact that

p(xa|xb) =
p(xa, xb)

p(xb)
(47)

which is according to the definition of the normal distribution (see eq.(1)) is

p(xa|xb) =

√
det Σbb

(2π)na/2
√

det Σ
exp(E) (48)

E = −1

2
(x− µ)>Σ−1(x− µ)− 1

2
(xb − µb)>Σ−1bb (xb − µb) (49)

Since

det Σ = det

(
Σaa Σab
Σ>ab Σbb

)
= det Σbb det(Σaa − ΣabΣ

−1
bb Σ>ab) (50)

the constant in front of the exponential in (48) results in the following expression

√
det Σbb

(2π)na/2
√

det Σ
=

1

(2π)na/2

√
det(Σaa − ΣabΣ

−1
bb Σ>ab)

=
1

(2π)na/2
√

det Λ−1aa
(51)

The precision matrix E, eq. (49), is given by

E = −1

2
(x− µ)>Λ(x− µ)− 1

2
(xb − µb)>Σ−1bb (xb − µb) =

= −1

2
(xa − µa)>Λaa(xa − µa)− 1

2
(xa − µa)>Λ−1ab (xb − µb)−

− 1

2
(xb − µb)>Λ−1ba (xa − µa)− 1

2
(xb − µb)>(Λbb − Σ−1bb )(xb − µb) =

= −1

2
x>a Λaaxa + x>a (Λaaµa − Λab(xb − µb))−

− 1

2
µ>a Λaaµa +

1

2
µ>a Λab(xb − µb)−

1

2
(xb − µb)>(Λbb − Σ−1bb )(xb − µb).

Using the block matrix inversion result

Σ−1bb Λbb − ΛbaΛ−1aa Λab (52)
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and completing the squares results in

E = −1

2
(xa − (Λaaµa − Λab(xb − µb)))>Λaa(xa − (Λaaµa − Λab(xb − µb))) (53)

Finally, combining (51)and (53) results in

p(xa|xb) =
1

(2π)na/2
√

det Λ−1aa
exp(E) (54)

which concludes the proof.
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