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1 Introduction

So far in the class, we have looked at several methods for solving reinforcement learning problems, including
model-based and model-free approaches. Here, we will continue our discussion of model-free approaches, by
considering direct policy search.

First, we’ll look at Section 3.3 of [3] for a discussion of direct policy search and an introduction to the
REINFORCE algorithm, a simple and highly versatile algorithm for derivative-free (function evaluation-
based) optimization of unconstrained problems. We’ll also be introduced to Policy Gradient and Pure
Random Search methods, from Section 4 of the same. Then we’ll briefly see how these approaches compare,
applied to a simple test case: the LQR.

After this, we’ll turn to [4] for a look at the theoretical properties and the “optimization landscape”
of model-free methods applied to LQR. We’ll analyze both the model-based and model-free cases of this
problem, prove convergence to the optimal policy, and characterize the sample-complexity of this convergence.

2 REINFORCE Algorithm

First, we’ll develop a simple and very general algorithm, typically called REINFORCE, that is used to solve
unconstrained optimization problems through function evaluations.

Let’s begin by considering the generic unconstrained optimization problem:

minimizec∈Rd
C(z) (1)

where we aim to find the value of z that minimizes our cost function. We claim that the problem of finding
the minimizing value of z is equivalent to the problem of finding the minimizing probability distribution over
z:

minimizep(z)Ep [C(z)]

If z∗ is the minimizing argument of C(z), then we can do at least as well by choosing a probability
distribution: we can achieve the same value of C(z) by choosing the δ-function around z∗.

Furthermore, we can do no better than a fixed policy by applying a probability distribution. To see this,
note that for a fixed dsitribution p, we must have Ep[C(z)] ≥ minzC(z). Because p is an arbitrary distribtion,
we know that minpEp[C(z)] ≥ minzC(z) also holds. So we can do at least as well as our fixed value, and
can do no better: the two problems are equivalent, and we can choose: optimize over z or distributions of z.

The space of distributions over z is infinite-dimensional, so we typically restrict ourselves to a subset
of the space that we can efficiently optimize over. A typical approach is to parameterize by a vector θ,
considering the family of density functions p(z; θ). We now have the following problem:

minimizeθEp(z;θ)[C(z)] (2)

Note that by restricting ourselves to this family of probability density functions, we have upper-bounded
our performance on the problem. Our parameterization may contain all of the δ-functions, in which case we
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could reach the same performance as the original optimization. But our family of distributions will likely
not contain all δ-functions, and so we will likely perform sub-optimally.

But our reformulation has a purpose. Now, we can compute the derivative of Ep(z;θ[C(z)] using a
method called the log likelihood trick. We define the cost J(θ) := Ep(z;θ)[C(z)], and examine the derivative
with respect to θ: ∇θJ(θ). We perform the following manipulation:

∇θJ(θ) =

∫
C(z)∇θp(z; θ)dz

=

∫
C(z)

∇θp(z; θ)
p(z; θ)

p(z; θ)dz

=

∫
[C(z)∇θlog p(z; θ)]p(z; θ)dz

= Ep(z;θ)[C(z)∇θlog p(z; θ)]

This tells us that the gradient of J(θ) is the expected value of the function

G(z, θ) = C(z)∇θlog p(z; θ) (3)

We can sample z from p(z; θ), and evaluate the function G(z, θ) to give us an unbiased estimate of
the gradient of J(θ). Using these function evaluations, we can follow the gradient and perform stochastic
gradient descent on J(θ). This approach gives us the REINFORCE algorithm [1] - Algorithm 1.

Algorithm 1: REINFORCE

Hyperparameters: step sizes αj > 0
Initialize: θ0, k = 0;
while ending condition not satisfied do

sample zk ∼ p(z; θk);
set θk+1 ← θk − αkC(zk)∇θlog p(zk; θk) ;
k ← k + 1 ;

end

The main benefit of Algorithm 1 is that it is incredible simple to implement. If you can sample efficiently
from p(z; θ), then you can run the algorithm on essentially any problem. However, this generality comes at
a cost: we now only access our cost function C(z) through function evaluations. Because we’ve used the
log-likelihood trick, we are using a derivative-free optimization method, and can not achieve the same perfor-
mance as methods that compute actual gradients. This performance gap is exacerbated when the function
evaluations are noisy. Another drawback to this approach is that our choice of probability distribution can
lead to high variance of stochastic gradients. High variance requires more samples to be drawn in order to
find a minima or maxima. In other words, sample complexity increases.

Although the approach has a few drawbacks, the simplicity of implementation is often valuable enough to
justify its use. There are two primary applications of this sort of stochastic search approach in reinforcement
learning: policy gradient and pure random search.

3 Policy Gradient

In reinforcement learning, our goal is typically to minimize some cost (or conversely, maximize a reward
subject to system dynamics. This is stated as follows:

minimize E

[
N∑
t=0

Ct(xt, ut)

]
subject to xt+1 = ft(xt, ut, et) (4)
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We can see from Bellman’s equation that the optimal policy for the above problem is always deterministic.
However, for policy gradient, we relax our search to probabilistic policies. This isn’t too unreasonable: these
policies are optimal for other sorts of problems, such as MDPs or zero-sum games.

Let’s consider parametric, randomized policies such that ut is sampled from a distribution p(u|τt; θ),
where τt = {x0:t, u0:t−1}, the observed trajectory up to time t. This probabilistic policy induces a probability
distribution over trajectories:

p(τ ; θ) =

N−1∏
t=0

p(xt+1|xt;ut)p(ut|τt; θ)

Further, if we overload notation, and define the cost over a trajectory as follows:

C(τ) =

N−1∑
t=0

C(xt, ut)

then we can write Equation 4 as the following optimal control problem:

minimizeθEp(τ ;θ)[C(τ)] (5)

which is identical to Equation 2! Policy gradient proceeds by sampling a trajectory using the probabilistic
policy, and updating using REINFORCE to find the solution.

We can verify that the gradient of J(θ) = Ep(τ,θ)[C(τ)] is not an explicit function of the dynamics:

∇θJ(θ) = Ep(τ ;θ)[C(τ)∇θlog p(τ ; θ)]

= Ep(τ ;θ)[C(τ)∇θ

[
N−1∑
t=0

log p(xt+1|xt, ut) +

N−1∑
t=0

log p(ut|τt; θ)

]

=

N−1∑
t=0

Ep(τ ;θ)[C(τ)∇θlog p(ut|τt; θ)]

This expectation can then be approximated by applying REINFORCE. This should not be surprising
though: by shifting to distribution over policies, we push the burden of optimization onto the sampling
procedure.

4 Pure Random Search

An older and more widely applied approach to solve Equation 1 is to directly perturb the current decision
variable z with random noise, and then update the model based on the received reward at this perturbed
value. Again, we can apply the REINFORCE algorithm without any knowledge of the underlying dynamics.
In effect, applying reinforce is equivalent to approximate gradient descent of C(z). We consider drawing
random perturbations ε according to some distribution - most simply a uniform or normal distribution. We
compute the following approximate gradient step update:

θt+1 = θt − αgσ(θt)

where

gσ(θ) =
C(θ + σε)− C(θ − σε)

2σ
ε

is a finite difference approximation to the gradient along direction ε. So this approach steps along the
gradient in direction ε. We can reduce the variance of these gradient estimates by averaging over multiple
random directions:
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g(m)
σ =

1

m

m∑
i=1

C(θ + σεi)− C(θ − σεi)
2σ

εi

The pure random search method is simpler to implement than the policy search method, but uses less
of the structure of the problem. It is difficult to say which approach is better without selecting a specific
problem to which to apply them. In the next section, we’ll look at how these algorithms perform on linear
quadratic regulator problems.

Side note: in [2], Mania, Guy, and Recht used a pure random search of static linear policies to take
on some of the benchmarks in OpenAI Gym. They managed to beat the state of the art, using orders of
magnitude less training data. The (intended) takeaway is that these benchmark tasks in OpenAI Gym and
other environments aren’t all that hard - after all, one of the simplest canonical algorithms can perform
really well! But a lot of the field had a different takeaway: we should be using more of random search and
linear policies!

5 Application to LQR

To compare the above approaches, let’s take a look at the simplest nontrivial problem that can help dis-
tinguish between them. In control, this is the linear quadratic regulator: linear dynamics, and convex
rewards/costs. In fact, let’s start with an even simpler example with no dynamics:

minimize C(u) = ||u||22, for u ∈ Rd

Applying policy gradient, we parameterize our policy as

p(u; θ) = N (θ, σ2I)

Then we can evaluate the formula in Equation 2:

Ep(u;θ)[C(u)] = ||θ||22 + σ2d

As we are simply minimizing the square of the norm of our input, the best place to start is clearly θ∗ = 0.
This will still leave us σ2d off from optimal, but it will give us a good starting guess.

As a function of θ, the cost is strongly convex. Also, from what we’ve seen in our analysis of stochastic
gradient descent, we need bounds on the (expected) norm of the gradient. If we draw u ∼ N (θ0, σ

2I), we
can compute G(u, θ0), our approximate gradient from Equation 3.

G(u, θ) = C(u)∇θlog p(u; θ) = −||w − θ0||22w
σ2

, w ∼ N (0, σ2I)

We can show that the expected norm of this gradient scales as O(σd3/2 + d1/2||θ0||2
σ ), a non-trivial scaling

with dimension. Interestingly, most bounds analyzing the convergence of these methods scale with the largest
magnitude that the cost function can possible take. If you start with a cost function taking values in [0,1]
and add 106, the running time may increase by 106, even though you haven’t fundamentally changed the
problem.

As another case, let’s take a look at the classic problem of a discrete-time double integrator with the
dynamical model

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut

Such a system could model the position (first state) and velocity (second state) of a unit mass object
under force u. As an instance of LQR, we can try to steer this system to reach point - from initial condition
x0 = [−1, 0] without expending much force:
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Figure 1: Cost for the double-integrator model for various reinforcement learning algorithms. The solid plots
denote the median performance, and the shaded regions capture the maximum and minimum performance.

Q =

[
1 0
0 0

]
, R = r0

for some scalar r0. Even in this simple case, there is an element of control design: changing r0 changes
the character of the control law, balancing control energy against time required to reach the destination.

To compare the different approaches, the author of [3] ran experiments on this instance with a small
amount of noise (et zero mean with covariance 10−4I) and training episode length L = 10. The goal was to
design a controller that works on an arbitrarily long time horizon using the fewest number of simulations of
length L.

To compare with policy search, the author restricts to policies that use a static, linear gain, as would
be optimal on an infinite time horizon. The author used the Adam algorithm to shape the iterates, and
subtracted the mean reward of previous iterates, a popular baseline subtraction heuristic to reduce variance.
Without these algorithmic changes, the author was unable to get policy gradient to converge.

Figure 1 from [3] is reproduced here, showing the results from this experiment.
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Figure 2: (a) Cost for the Laplacian model for varied models over 5,000 iterations. (b) The fraction of
the time that the synthesized control strategy returns a stabilizing controller. Abbreviations: LQR, linear
quadratic regulator; LSPI, least squares policy iteration

The author of [3] also considered a more complex instance of LQR: unstable Laplacian dynamics. An
idealized instance of data canter cooling, a popular application of RL, with three heat sources and cooling
devices, is modeled by the following linear dynamical system:

xt+1 =

1.01 1.01 0
0.01 1.01 0.01

0 0.01 0.01

xt +

1 0 0
0 1 0
0 0 1

ut + wt

The LQR problem is approached with settings Q = I and R = 1, 000I. Figure 3 from [3] is reproduced
here showing the results of applying model-free and model-based methods to learn a solution to this LQR
problem.

6 Theoretical Properties: Policy Gradient for LQR

Now, we turn to [4] for an in-depth theoretical analysis of the performance of policy gradient methods on
an infinite-horizon LQR problem. They consider the following problem:

minimize E

[ ∞∑
t=0

(xTt Qxt + uTt Rut)

]
such that xt+1 = Axt +But, x0 ∼ D (6)

and make a few important contributions. First, they show that gradient descent on linear policies
ut = Kxt globally converges to optimal policies, and does so efficiently. Secondly, they showed that simulated
trajectories can be used in a stochastic policy gradient method with provable convergence to a globally
optimal policy with polynomial computational and sample complexity. And finally, they show that natural
policy gradient methods (and their stochastic counterparts) enjoy significantly improved convergence rates.

6.1 Setup

In this work, direct policy gradient methods are characterized, where the policy is linearly parameterized
by a matrix K, such that the controls ut = −Kxt are generated. The cost of this policy K is denoted as
follows:
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C(K) := Ex0∼D

[ ∞∑
t=0

(xTt Qxt + uTt Rut)

]
(7)

where {xt, ut} is the trajectory and control sequence resulting from following K, starting from x0.
Gradient descent updates the policy, following the update rule:

K ← K − η∇C(K)

We can more clearly write the gradient in its functional form. With PK as the solution to

PK = Q+KTRK + (A−BK)TPK(A−BK)

we can write

C(K) = Ex0∼D
[
xT0 PKx0

]
.

Also, define ΣK as the state correlation matrix:

ΣK = Ex0∼D

∞∑
t=0

xtx
T
t

.
Now, we can write the gradient in its functional form:

Lemma 1. (Policy Gradient Expression):

∇C(K) = 2
(
(R+BTPKB)K −BTPKA

)
ΣK

for simplicity later, define:

EK :=
(
(R+BTPKB)K −BTPKA

)
so we have ∇C(K) = 2EKΣK

Proof: The full proof can be found in [4]

6.2 Optimization Landscape

Lemma 2. (Gradient Domination) Let K∗ be an optimal policy. Suppose K has finite cost and σmin(Σ +
K) > 0. It holds that:

C(K)− C(K∗) ≤ ||ΣK∗ ||
σmin(Σ +K)2σmin(R)

||∇C(K)||2F

Proof: comes from analyzing the advantage of the optimal policy Σ∗ over Σ in each step.

Corollary 1. (Stationary point characterization) If ∇C(K) = 0, then either K is an optimal policy or ΣK
is rank deficient.

Note that ΣK ≥ Σ0 := Ex0∼Dx0x
T
0 . So if Ex0∼Dx0x

T
0 is full rank, then ΣK is full rank, and we know

that all stationary points are global optima (i.e. K is optimal).
Using the fact that ΣK ≥ Σ0, we can prove the convergence of C(K) by showing that it is gradient

dominated, meaning in this case that ∃λ s.t. C(K)− C(K∗) ≤ λ||∇C(K)||2. Proving convergence this way
dates back to the 60s with [5], and requires C(K) to be gradient dominated and smooth. If this were the
case, we would be able to immediately imply global convergence at a linear rate. However, our cost function
is not smooth. Near the boundary between stable and unstable policies, our cost may go from convergent
to ∞. In other words, we may have C(K)−C(K + ε) =∞. To solve this problem, we observe that as long
as we aren’t too close to the boundary, the cost function satisfies an ”almost smoothness” condition:
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Lemma 3. (”Almost” smoothness) C(K) satisfies:

C(K ′)− C(K) = −2Tr(ΣK′(K −K ′)TEK) + Tr(ΣK′(K −K ′)T (R+BTPKB)(K −K ′))

where EK here is as defined in Lemma 1.

To see why this helps, consider when K ′ is sufficiently close to K such that ΣK′ ≈ ΣK +O(||K −K ′||F ).
Then, considering the order with respect to (K −K ′), Lemma 3 simplifies as follows:

−2Tr(ΣK′(K −K ′)TEK) +O(||K −K ′||2F )

= −Tr(K −K ′)T 2EKΣK +O(||K −K ′||2F )

= −Tr(K −K ′)T∇C(K) +O(||K −K ′||2F )

This tells us that as long as small perturbations of the controller lead to small perturbations of the steady
state covariance, the cost function admits a Taylor series approximation

C(K ′)− C(K) ≈ 〈K −K ′,∇C(K)〉+O(||K −K ′||2F )

Quantifying this well-behaved (i.e. smooth) first order Taylor series approximation is used to show that
gradient descent converges to critical points. This, combined with a gradient-dominated cost function, is
sufficient to conclude convergence to a globally optimal solution despite a non-convex landscape.

6.3 Main Results

First, results on exact gradient methods are provided. We’ll work through these, establishing global conver-
gence, and then consider model-free methods.

6.3.1 Model-Based Methods

We’ll use three exact update rules. The gradient descent update is:

Kn+1 = Kn − η∇C(Kn),

the natural gradient descent update is:

Kn+1 = Kn − η∇C(Kn)Σ−1
Kn
,

and the Gauss-Newton method update is:

Kn+1 = Kn − η(R+BTPKn
B)−1∇C(Kn)Σ−1

Kn
.

Theorem 1. (Global Convergence of Gradient Methods)
Suppose C(K0) is finite and µ = σmin(Ex0∼D[x0x

T
0 ]) > 0

With the following step sizes and lower bounds for N , we have that C(KN )− C(K∗) ≤ ε

Gauss-Newton:

η = 1, N ≥ ||ΣK∗ ||2
µ

log
C(K0)− C(K∗)

ε

Natural Gradient Descent:

η =
1

||R||+ ||B||2C(K0)
µ

, N ≥ ||ΣK∗ ||2
µ

log
C(K0)− C(K∗)

ε

(
||R||

σmin(R)
+
||B||2C(K0)

µσmin(R)

)
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Gradient Descent: for an appropriate (constant) setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

||A||2
,

1

||B||2
,

1

||R||2
, σmin(R)

)

N ≥ ||ΣK∗ ||2
µ

log
C(K0)− C(K∗)

ε
poly

(
C(K0)

µσmin(R)
, ||A||2, ||B||2, ||R||2,

1

σmin(R)

)
Proof:Gauss-Newton reproduced here, others see supplemental material of [4].

Lemma 4. First, let

K ′ = K − η(R+BTPKB)−1∇C(K)Σ−1
K

if η ≤ 1,

C(K ′)− C(K∗) ≤
(

1− ηµ

||ΣK∗ ||

)
(C(K)− C(K∗))

Now, the proof: First, note that from Lemma 1, we can rewrite K ′ = K − η(R + BTPKB)−1EK . Now,
using Lemma 3 and η ≤ 1:

C(K ′)− C(K) = −2ηTr(ΣK′E
T
K(R+BTPKB)−1EK) + η2Tr(ΣK′E

T
K(R+BTPKB)−1EK)

≤ −ηTr(ΣK′ETK(R+BTPKB)−1EK)

≤ −ησmin(ΣK′)Tr(E
T
K(R+BTPKB)−1EK)

≤ −ηµTr(ETK(R+BTPKB)−1EK)

≤ − ηµ

||ΣK∗ ||
(C(K)− C(K∗)),

where the last step uses Lemma 2. Proof of convergence rate of Gauss Newton algorithm is immediate:
η = 1 leads to a contraction of 1− ηµ

||ΣK∗ ||
at every step.

6.3.2 Model Free Methods

In this setting, the controller has only simulation access to the model - it does not know A,B,Q, or R, and
can only query the simulation. So to convert our model-based formulations, we use a gradient estimation
algorithm.

The step update formulae are similar to model-based, only replacing exact gradient values with algorithm
calls. The policy gradient step update is:

Kn+1 = Kn − η ̂∇C(Kn),

and the natural policy gradient step update is:

Kn+1 = Kn − η ̂∇C(Kn)Σ−1
Kn
.

The gradient estimates widehat∇C(Kn) are calculated using Algorithm 2.
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Algorithm 2: Model-Free Policy Gradient (and Natural Policy Gradient) Estimation

Input: K, number of trajectories m, roll out length l, smoothing parameter r, dimension d
for i = 1,...m do

sample a policy K̂i = K + Ui, where Ui is drawn uniformly at random over matrices whose
Frobenius norm is r;

Simulate K̂i for l steps starting from x0 ∼ D. Let Ĉi and Σ̂i be the empirical estimates:

Ĉi =

l∑
t=1

ct, Σ̂i =

l∑
t=1

xtx
T
t

where ct and xt are the costs and states on this trajectory ;

end
Return the (biased) estimates:

∇̂C(K) =
1

m

m∑
i=1

d

r2
ĈiUi, Σ̂K =

1

m

m∑
i=1

Σ̂i

The choice of this algorithm over REINFORCE (Algorithm 1) is primarily for technical reasons. REIN-
FORCE could potentially have lower variance.

Anyhow, Algorithm 2 is applied at every iteration to provide the estimates necessary for policy gradient
and natural policy gradient methods. This brings us to the main result of the paper for model-free methods:

Theorem 2. (Global Convergence in the Model Free Setting)
Assume that C(K0) is finite, µ > 0 (defined in Theorem 1), and that x0 ∼ D has norm bounded by L almost
surely. Then, given the step sizes and lower bounds of N outlined below, we can say that with probability
greater than 1− e−d, C(KN )− C(K∗) ≤ ε

Natural policy gradient case:

η =
1

||R||+ ||B||2C(K0)
µ

, N ≥ ||ΣK∗ ||2
µ

log
2(C(K0)− C(K∗))

ε

(
||R||

σmin(R)
+
||B||2C(K0)

µσmin(R)

)
Gradient descent case: for an appropriate (constant) setting of the stepsize η,

η = poly

(
µσmin(Q)

C(K0)
,

1

||A||2
,

1

||B||2
,

1

||R||2
, σmin(R)

)

N ≥ ||ΣK∗ ||2
µ

log
C(K0)− C(K∗)

ε
poly

(
C(K0)

µσmin(R)
, ||A||2, ||B||2, ||R||2,

1

σmin(R)

)
Proof sketch:

1. Show that rollout length l is long enough so that finite cost C and covariance Σ approximate their
infinite counterparts

2. Show that with enough samples, Algorithm 1 can estimate both the gradient∇C(K) and the covariance
matrix ΣK with a desired accuracy

3. Prove that gradient and natural gradient descent still converge at (about) the same rate if the gradients
have slight perturbations added to them
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7 Conclusion

We have been introduced to several approaches to model-free reinforcement learning: the REINFORCE
algorithm, policy gradient, and pure random search. We looked at how these approaches performed on two
LQR problems: the discrete-time double integrator, and the more complex idealized data center cooling
problem. We saw that on both problems, at least one model-free method was able to generate stabilizing
controllers even in the presence of unstable dynamics, given enough samples (on the order of a few thousand).
In the double integrator, the model-free methods converged to the optimal solution. In the more complex
cooling problem, the model-free methods performed roughly one order of magnitude worse than the nominal
and robust model-based control methods. Random search was able to stabilize almost as quickly as the
model-based method, but policy gradient was inconsistent and did not stabilize reliably. It should be noted
that we do expect model-free methods to underperform compared to model-based methods tailor-built for a
problem. It is in scenarios where a model is not available that model-free methods excel.

We then turned to a theoretical analysis of the performance of model-free methods - specifically, direct
policy gradient - on LQR. We first developed a proof of convergence of model-based methods, and then
used this framework to reason about model-free methods that only have simulation query access to the
system. Under assumptions of “almost-smoothness” we were able to prove that natural policy gradient, and
gradient descent model-free methods are convergent to a globally optimal policy, and characterized their
sample complexity.
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