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1 Introduction

In this lecture we continue our study on generalization error bounds. Let us first recall the problem setup.
Let X ,Y be an input and an output space, respectively. Denote Z = X × Y and let D be an unknown
distribution on Z. Given a function class F ⊂ YX and a loss function ` : F ×Z → R, we would like to find
f ∈ F that minimizes the risk

R[f ] = Ez∼D[`(f, z)].

The difficulty here is that the distribution is unknown and we only have access to a data set S = {z1, . . . , zN}
consisting of i.i.d. samples from the distribution. A natural workaround is to find the minimizer of the
empirical risk

RS [f ] =
1

N

N∑
i=1

`(f, zi)

and the crucial problem here is to bound the generalization error

R[f ]−RS [f ].

In the previous lecture we proved uniform generalization bounds based on concentration inequalities and
some measure of the function class complexity. In this lecture, we will adopt an alternative perspective and
view the problem through the lens of stochastic optimization. Instead of considering all possible functions
within a function class, we will focus on functions found by stochastic optimization and prove generalization
bounds based on algorithmic stability.

The lecture note will be organized as follows: we will start by introducing notions of stochastic gradient
algorithms in section 2 and show that they find solutions with vanishing excess risk for convex loss func-
tion. After introducing notions of algorithmic stability in section 3, we will show how stability guarantees
generalization error and proceed to prove the stability of stochastic gradient methods in section 4. We will
conclude with stability inducing property of many commonly used optimization techniques in section 5.

2 Stochastic Gradient Method

Consider a function class parameterized by θ ∈ Θ, where Θ is convex and compact. Then each function
f ∈ F can be characterized by its parameterization θ and we may write

R[θ] := R[fθ], RS [θ] := R[fθ], `(θ, z) := `(fθ, z).

Stochastic gradient descent (SGD) is an iterative algorithm that updates θ based on the gradient of the loss
function at a randomly sampled data point zk = (xk, yk) ∼ D:

θk+1 = G`,α(θk) := ΠΘ (θk − αk∇`(θk, zk)) , (1)

where αk is the learning rate and ΠΘ is the Euclidean projection onto Θ. G`,α(θ) is called the update rule.
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2.1 Stochastic Optimization Bounds

Let {θi}ni=1 be the trajectory of SGD according to the update rule (1), and let

θ̄n :=

n∑
i=1

wiθi, where wi =
αi∑n
i=1 αi

(2)

be the weighted running average of the trajectory. Our first result below shows that for loss functions that
are convex in θ, θ̄n asymptotically minimizes the population risk (over Θ):

Theorem 1. Suppose `(·, z) is a convex function for all z ∈ Z, and ||∇`(θ, z)|| ≤ G for all θ ∈ Θ, z ∈ Z,
and suppose diam(Θ) ≤ D. Let R? = minθ∈ΘR[θ] be the best possible true risk achievable by a θ ∈ Θ. Set
the step size αi = D

G
√
n

. Then, with probability at least 1− δ, we have

R[θ̄n] ≤ R? +
DG(1 +

√
2 log(1/δ))√
n

(3)

Proof. Denote

θ? = arg min
θ∈Θ

R[θ], gi = ∇`(θi, (xi, yi)), Di = ||θi − θ?|| , ∆i = gi −∇R[θi].

Then

R[θ̄n]−R[θ?] ≤ Ez

[
n∑
i=1

wi` (θi, z)

]
−R[θ?] (Jensen’s Inequality)

=

n∑
i=1

wi(R[θi]−R?) ≤
n∑
i=1

wi 〈∇R(θi), θi − θ?〉 (convexity)

=
1∑n
i=1 αi

n∑
i=1

[αi 〈gi, θi − θ?〉 − αi 〈∆i, θi − θ?〉]

≤ 1

2
∑n
i=1 αi

n∑
i=1

(
D2
i −D2

i+1 + α2
i ||gi||

2 − 2αi 〈∆i, θi − θ?〉
)

(?)

=
1

2
∑n
i=1 αi

(
D2

1 −D2
n+1 +

n∑
i=1

(
α2
i ||gi||

2 − 2αi 〈∆i, θi − θ?〉
))

≤
D2 +G2

∑n
i=1 α

2
i

2
∑n
i=1 αi

−
n∑
i=1

wi 〈∆i, θi − θ?〉 .

In (?) we used a key inequality:

||θi+1 − θ?||2 ≤ ||θi − θ?||2 − 2αi 〈gi, θi − θ?〉+ α2
i ||gi||

2
.

To see this, notice

||θi+1 − θ?||2 = ||θi+1 − θi + θi − θ?||2

= ||θi+1 − θi||2 + 2 〈θi+1 − θi, θi − θ?〉+ ||θi − θ?||2

= ||θi − θ?||2 + ||ΠΘ(θi − αigi)−ΠΘ(θi)||2 + 2 〈ΠΘ(θi − αigi), θi − θ?〉

≤ ||θi − θ?||2 + α2
i ||gi||

2
+ 2 〈ΠΘ(θi − αigi), θi − θ?〉

= ||θi − θ?||2 + α2
i ||gi||

2 − 2αi 〈gi, θi − θ?〉 ,
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where for the inequality we used the fact that ||ΠΘ(u)−ΠΘ(v)|| ≤ ||u− v|| for any convex set Θ (see
Lemma 5 and comments for a proof), and in the last step we use the fact that θi − θ? ∈ Θ, so 〈v, θi − θ?〉 =
〈ΠΘ(v), θi − θ?〉 for any v in the ambient space.

Setting αi = D
G
√
n

, we have

R[θn]−R[θ?] ≤
DG√
n
− 1

n

n∑
i=1

〈∆i, θi − θ?〉 . (4)

Now notice that

Xj :=
1

n

j∑
i=1

〈∆i, θi − θ?〉

is a martingale (since E[∆j+1|θ1, . . . , θj ] = 0) and by Cauchy-Schwartz we have

|Xj+1 −Xj | =
1

n
|〈∆i, θi − θ?〉| ≤

2GD

n
,

so by Azuma’s inequality we have

P[−Xn ≥ t] ≤ exp

(
− nt2

2G2D2

)
.

Inverting the probability, we have with probability at least 1− δ,

− 1

n

n∑
i=1

〈∆i, θi − θ?〉 ≤ DG
√

2 log(1/δ)

n

Combining this with (4), we have the desired high probability bound.

Notice that this is not a generalization bound, but can be combined with a generalization bound to give
a bound on the population risk of SGD.

3 Algorithmic Stability

In this section we will introduce the notion of algorithmic stability. Consider a learning algorithmA : Zn → F
that maps a training set S into a function A(S). The notion of stability we will be using in this note is
uniform stability (see other forms of stability in [1]). Informally, an algorithm is uniformly stable if a single
change in the input results in almost no change in prediction, the formal definition is given below:

Definition 1 (Uniform Stability [1]). A randomized algorithm A is ε-uniformly stable if for all datasets
S, S′ ∈ Zn such that S, S′ differ in at most one example, we have

sup
z

EA[`(A(S); z)− `(A(S′), z)] ≤ ε.

3.1 Generalization Bounds Through Algorithmic Stability

Now we show how algorithmic stability implies small generalization error. The following theorem proves
generalization in expectation:

Theorem 2 (Theorem 2.2 [2]). Let A be ε-uniformly stable, then

|ES,A [RS(A(S))−R(A(S))]| ≤ ε.
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Proof. Let S = (z1, . . . , zn) and S′ = (z′1, . . . , z
′
n) be two independent random samples from D, and let

Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn},

be a copy of S with the i-th element replaced by z′i. Then

ESEA[RS [A(S)]] = ESEA

[
1

n

n∑
i=1

`(A(S), zi)

]
= ES,S′EA

[
1

n

n∑
i=1

`(A(Si), z′i)

]
,

and

ESEA[R[A(S)]] = ESEAEz[`(A(S), z)] = ES,S′EA[`(A(S), z′i)],

so their difference can be expressed as

ES,A[RS [A(S)]−R(A(S))] = ES,S′,A

[
1

n

n∑
i=1

(
`(A(Si), z′i)− `(A(S), z′i)

)]
≤ ε,

since each term in the sum is upper bounded by ε by uniform stability.

We can get high probability bound from theorem 2. Notice that the algorithmic stability also implies
that ∣∣R[A(S)]−R[A(Si)]

∣∣ ≤ ε,
and ∣∣RS [A(S)]−RSi [A(Si)]

∣∣ ≤ ε,
so the function F (S, z) := R[A(S)]−RS [A(S)] satisfies the bounded difference property and by McDiarmid’s
inequality and we get

P [R[A(S)]−RS [A(S)] ≥ εstab + t] ≤ exp

(
− t2

2ε2stabn

)
Inverting probability, with probability at least 1− δ, we have

R[A(S)] ≤ RS [A(S)] ≤ εstab

(
1 +

√
2n log(1/δ)

)
(5)

Notice that this bound is nonvacuous only if εstab = o(1/
√
n), with εstab = c/

√
n, we can recover the classical

bound O(1/
√
n). There are more recent works like [3] that give better high probability bounds.

4 Algorithmic Stability of SGD

This section will be devoted to proving the algorithmic stability of SGD. We will mainly focus on the case of
convex loss function in this note. Some results do carry over to the case where the loss-function is non-convex,
provided that the steps are sufficiently small and the number of iterations is not too large. See section 3.5
of [2] for detailed analysis.

We will define here several properties of the update rules that characterize how they drive update se-
quences:

Definition 2 (Expansiviy). An update rule is η-expansive if

sup
v,w∈Θ

||G(v)−G(w)||
||v − w||

≤ η

Definition 3 (Boundedness). An update rule is σ-bounded if

sup
w∈Θ
||w −G(w)|| ≤ σ.
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The following lemma explicitly shows how expansiveness and boundedness control the divergence between
update sequences:

Lemma 1 (Lemma 2.5 [2]). For two fixed sequences of update rules G1, . . . , GT and G′1, . . . , G
′
T , let w0 = w′0

be a starting point and let wt+1 = Gt(wt), w
′
t+1 = G′t(w

′
t) be the sequence of updates evolving according to

the update rules. Denote δt := ||wt − w′t||, then δ0 = 0 and we have the recurrence relation

δt+1 ≤

 ηδt Gt = G′t is η-expansive
min(η, 1)δt + 2σt Gt and G′t are σ-bounded,

Gt is η-expansive

Proof. The first inequality follows directly from the definition of η-expansiveness. The second inequality is
essentially triangular inequality:

δt+1 = ‖Gt (wt)−G′t (w′t)‖
≤ ‖Gt (wt)− wt + w′t −G′t (w′t)‖+ ‖wt − w′t‖
≤ δt + ‖Gt (wt)− wt‖+ ‖Gt (w′t)− w′t‖
≤ δt + 2σ

and alternatively:
δt+1 = ‖Gt (wt)−G′t (w′t)‖

= ‖Gt (wt)−Gt (w′t) +Gt (w′t)−G′t (w′t)‖
≤ ‖Gt (wt)−Gt (w′t)‖+ ‖Gt (w′t)−G′t (w′t)‖
≤ ‖Gt (wt)−Gt (w′t)‖+ ‖w′t −Gt (w′t)‖+ ‖w′t −G′t (w′t)‖
≤ ηδt + 2σ

The following lemma shows that smoothness of the loss function and its derivative implies expansiveness
of the gradient update rule (1):

Lemma 2 (Lemma 3.3, 3.7 [2]). Assume f is L-Lipschitz and the gradient of f is β-Lipschitz, then the
follow properties hold:

1. Gf,α is (αL)-bounded.

2. Assume in addition that f is convex. Then for any α ≤ 2/β, the gradient update Gf,α is 1-expansive.

Proof. 1. The first property follows directly from definition and the 1-expansivity of Euclidean projection:

||w −Gf,α(w)|| ≤ ||α∇f(w)|| ≤ αL.

2. Lipschitz assumption on the gradient and convexity together imply the co-coercivity of the gradients
(a proof can be found in Theorem 2.1.5 of [4]):

〈∇f(v)−∇f(w), v − w〉 ≥ 1

β
‖∇f(v)−∇f(w)‖2

Therefore

‖Gf,α(v)−Gf,α(w)‖2 = ‖v − w‖2 − 2α〈∇f(v)−∇f(w), v − w〉+ α2‖∇f(v)−∇f(w)‖2

≤ ‖v − w‖2 −
(

2α

β
− α2

)
‖∇f(v)−∇f(w)‖2

≤ ‖v − w‖2
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The lemmas above provide all the essential tools we need to prove the stability of SGD. Intuitively, on
two datasets that differ only in one example, SGD performs the same update with high probability, so the
final output are close to each other by the expansiveness of the gradient update. In the rare case where SGD
selects different example, we can make use of the smoothness properties of the loss function to bound the
growth of difference. A formal proof is given below:

Theorem 3 (Theorem 3.8 [2]). Assume the loss function is convex and L-Lipschitz, and its gradient is
β-Lipschitz. Suppose we run SGD with step size αt ≤ 2/β for T steps, then the procedure satisfies uniform
stability with

εstab ≤
2L2

n

T∑
t=1

αt

Proof. Let S, S′ denote two datasets differing only in one point, we want to show

sup
S,S′,z

E |`(A(S); z)− `(A(S′), z)| ≤ 2L2

n

T∑
t=1

αt. (6)

Consider the gradient updates G1, . . . , GT and G′1, . . . , G
′
T induced by running SGD on S, S′, respectively.

Let wT , w
′
T denote the corresponding outputs.

For a fixed example z ∈ Z, the Lipschitz condition gives

E |f (wT ; z)− f (w′T ; z)| ≤ LE [δT ] , (7)

where δt = ||wt − w′t|| as before. Notice at time step t, with probabiliy 1−1/n, the element selected by SGD
is the same in both S, S′. In this case we have Gt = G′t so by Lemma 2.2, the update is 1-expansive and we
have δt+1 ≤ δt.

With probability 1/n, the selected sample is different, in which case we will use that both Gt and G′t are
αtL-bounded by Lemma 2.1. Then by the second inequality in Lemma 1 we have δt+1 ≤ δt + 2αtL. Then
by linearity of expectation we have

E [δt+1] ≤
(

1− 1

n

)
E [δt] +

1

n
E [δt] +

2αtL

n
= E [δt] +

2Lαt
n

for every 0 ≤ t ≤ T , which gives

E [δT ] ≤ 2L

n

T∑
t=1

αt.

Combining this with (7), we have

E |f (wT ; z)− f (w′T ; z)| ≤ 2L2

n

T∑
t=1

αt,

since this holds for all S, S′, z, we know the desired inequality (6) holds.

If we use a constant learning rate α and output the averaged model w̄T = 1
T

∑T
t=1 wt , we could improve

the bound by a constant factor (see proof in 4) and get

εstab ≤
αTL2

n
.

Combining this with the high probability bound (5), we have with probability at least 1− δ,

R[θT ] ≤ RS [θT ] +
αTL2

n

(
1 +

√
2n log(1/δ)

)
.
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5 Stability-Inducing Operations

In this section we show that several popular heuristic operations performed in practice do increase the
stability of stochastic gradient method.

5.1 Weight Decay

Given an objective function f , a learning rate α and a weight decay rate µ, the gradient update with weight
decay is defined to be

Gf,µ,α(w) = (1− αµ)w − α∇f(w).

Notice this is equivalent to a gradient step with step size α on the regularized objective

g(w) = f(w) +
µ

2
||w||2 .

The effect of weight decay on gradient descent is shown in the following lemma:

Lemma 3 (Lemma 4.2 [2]). Assume f has β-Lipschitz gradients, then Gf,µ,α is (1 + α(β − µ))-expansive.

Proof. Denote G = Gf,µ,α, then by triangular inequality and Lipschitz condition, we have

‖G(v)−G(w)‖ ≤ (1− αµ)‖v − w‖+ α‖∇f(w)−∇f(v)‖
≤ (1− αµ)‖v − w‖+ αβ‖w − v‖
= (1− αµ+ αβ)‖v − w‖

In other words, using weight decay improves the smoothness of the function and replaces any dependence
on β with β − µ. In particular, once µ > β, the update becomes contractive.

5.2 Gradient Clipping

When training deep neural networks it is a common practice to restrict the magnitude of the gradient,
typically through truncation, scaling, or dropping of examples that cause an exceptionally large value of the
gradient norm. This leads to a bound on the Lipschitz parameter L of the loss.

5.3 Dropout

Dropout is a popular heuristic often used for preventing overfitting. Practically, applying dropout is equiv-
alent to placing a mask on the gradient that sends a fraction of the gradient to zero, i.e., replace ∇`(θ, z)
with D∇`(θ, z).

Definition 4. We say a randomized map D : Θ → Θ is a dropout operator with dropout rate s if for all
v ∈ Θ, we have E ||Dv|| = s ||v||. For a differentiable function f : Θ→ Θ, we let

DGf,α := v − αD(∇f(v))

denote the dropout gradient update.

Dropout operators improve the effective Lipschitz constant of the objective function.

Lemma 4. Assume f is L-Lipschitz. Then the dropout update DGf,α with rate s is sαL-bounded.

Proof. Essentially by definition:

E ||DGf,α(v)− v|| = αE ||D∇f(v)|| = αsE ||∇f(v)|| ≤ αsL.
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5.4 Projections and Proximal Steps

The proximal update rule is defined by

Definition 5 ((Proximal Update) [2]). For a nonnegative step size α ≥ 0 and a function f : Θ → R, we
define the proximal update rule Pf,α as

Pf,α(θ) = arg min
v

1

2
||θ − v||2 + αf(v)

The following lemma shows why proximal steps could improve stability:

Lemma 5. If f is convex, the proximal update is 1-expansive.

Proof. Define

Pα(w) := arg min
v

1

2α
||w − v||+ f(v),

and define the map Qα(w) := w − Pα(w). Then by the optimality conditions we know

α−1Qα(w) ∈ ∂f(Pα(w)).

Then by convexity of f we have
〈Pα(v)− Pα(w), Qα(v)−Qα(w)〉 ,

so we have

||v − w||2 = ||Pα(v)− Pα(w) +Qα(v)−Qα(w)||2

= ||Pα(v)− Pα(w)||+ 2 〈Pα(v)− Pα(w), Qα(v)−Qα(w)〉+ ||Qα(v)−Qα(w)||2

≥ ||Pα(v)− Pα(w)|| .

Notice that for a convex set Θ, the indicator function IΘ is convex, and hence the Euclidean projection
onto Θ is 1-expansive. In many cases, proximal operators are actually contractive. A notable case is when
f(·) is the Euclidean norm, in which case the update rule is η-expansive with η = (1 + α)−1, so choosing an
appropriate proximal update could induce better stability.

5.5 Model Averaging

The idea of model averaging is to output the weighted average of iterates wt obtained at each time step, as
introduced in 2. The following theorem shows that model averaging improves the bound in Theorem 3 by a
constant factor

Theorem 4. Assume f : Θ→ [0, 1] is convex, L-Lipschitz and has β-Lipschitz gradient, then if we run SGD
with step size αT ≤ α leq2/β for T steps, the average of the first T iterates of SGD has uniform stability of

εstab ≤ α(T+1)L2

n .

Proof. Let w̄T = 1
T

∑T
t=1 wt, then since

wt =

t∑
k=1

α∇f(wk, zk),

we have

w̄T = α

T∑
t=1

t∑
k=1

∇f(wk, zk) = α

T∑
k=1

T∑
t=k

∇f(wk, zk) = α

T∑
k=1

T − k + 1

T
∇f(wk, zk).

Follow a similar argument as in theorem 3, we have

E[δt] ≤ (1− 1/n)E[δt−1] +
1

n

(
E[δt−1] + 2αL

T − t+ 1

T

)
,

summing up both sides and using the Lipschitz continuity of f as in theorem 3, we have the desired bound.
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