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1 Introduction

Previously we were able to show with system level synthesis and robust control bounds [1] that end-to-end
guarantees of performance for a controller

Ĵ − J∗
J∗

≤ C(robustness, excitability)

√
(d+ p) log 1

δ

N
(1)

with probability of 1 − δ for sufficiently large N. Here Ĵ represents the learned controller on the true
system, J∗ is the optimal performance, d is the number of states and p is the number of inputs, and C is a
constant depending on the true system.

Figure 1: Learning and control pipeline

However to understand how good this guarantee is we need to understand different performance metrics
for learned control policies.

2 MDP

2.1 Finite MDP

In finite MDP we consider the following equation where T is the horizon length.

min
π

E[

T−1∑
t=0

ct(xt, ut) + cT (xT )]

s.t. xt+1 = ft(xt, ut, wt)

ut = πt(x0:t, u0:t−1)

(2)

Here xt ∈ Rnx is the state, ut ∈ Rnu the control input, and t ∈ Rnw the the state transition noise. The
control policy is π = {π1, ..., πt, .., πT−1} where a particular πt maps the current state and previous inputs
to the current input and is possibly a random mapping.

If dynamic transition functions and cost functions are known and Markovian we can restrict the policy
search to ut = πt(xt) and solve using dynamic programming via Bellman iteration on the value function.

VT (xT ) = E[cT (xT )]

Vt(xt) = min
ut

E[ct(xt, ut) + Vt+1(ft(xt, ut, wt))]
(3)
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In the example of the Linear Quadratic Regulator (LQR) with time invariant dynamics and cost, Q � 0,
and R � 0.

min
π

E[

T−1∑
t=0

xTt Qxt + uTt Rut + xTTQTxT ]

s.t. xt+1 = Axt +But, x0 = ζ

ut = πt(xt)

(4)

where VT (x) = xTTQTxT and assume Vt+1 = xTt+1Pt+1xt+1 to solve the recursion on

Vt(z) = min
u
zTQz + uTRu+ Vt+1(Az +Bu)

= min
u
zTQz + uTRu+ (Az +Bu)TPt+1(Az +Bu)

= zT (Q+ATPt+1A−ATPt+1B(R+BTPt+1B)−1BTPt+1A)z

(5)

with

u∗t = Kxt

K = −(R+BTPt+1B)−1BTPt+1A

Pt = Q+ATPt+1A−ATPt+1B(R+BTPt+1B)−1BTPt+1A

PT = QT

(6)

2.2 Infinite MDP

Moving to the infinite horizon setting with static cost and dynamics functions then different infinite horizon
costs can be formulated.

The discounted cost setting:

E[

∞∑
t=0

γtc(xt, ut)]

γ ∈ (0, 1]

(7)

If c(xt, ut) is bounded almost surely and γ < 0 then E[
∑∞
t=0 γ

tc(xt, ut)] <∞ which is easy to work with
theoretically. The optimal cost-to-go and policy can also be obtained from the Bellman Equation

V∗(x) = min
u

E[c(x, u) + γV∗(f(x, u, w))] (8)

which is a model-based approach using the value function and the model free approach being

Q∗(x, u) = min
v

E[c(x, u) + γQ∗(f(x, u, w), v)]

π∗(x) = argmin
u

Q∗(x, u)
(9)

The downside being for control the bounded discounted cost does not guarantee stability.
Asymptotic average cost:

E[ lim
T→∞

1

T

T−1∑
t=0

c(xt, ut) + cT (xT )]

γ ∈ (0, 1]

(10)
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Care must be taken to make sure the limit converges but if the closed loop system is stable then it will
converge. It is also appropriate for stability in stochastic control, but is difficult to work with theoretically.
One application is in stochastic LQR below.

min
π

lim
T→∞

1

T
E[

T−1∑
t=0

xTt Qxt + uTt Rut + xTTQTxT ]

s.t. xt+1 = Axt +But

ut = πt(xt)

(11)

which can be solved with Discrete Algebraic Riccati (DAR) recursion similar to as before. Also if A, B,

and Q
1
2 are stabilizable and detectable then the closed loop system is stable and converges to a stationary

distribution and static policy.

3 MDP with unknown dynamics

Now if the dynamic transition functions are unknown but the cost functions are known and time invariant,
then learning can be broken into two categories episodic tasks and single-trajectory tasks. In episodic tasks
data is collected over a finite horizon, updates are made, and the system is reset to begin the next episode.
In single-trajectory tasks a system is evaluated under a policy during a single evolution.

There exist a tension between identifying an unknown system and controlling it known as the exploration
vs. exploitation tradeoff. Exploration requires sufficient excitation of a system to achieve an accurate model
but this degrades performance and if an incorrect model is exploited then a system is left with sub-optimal
performance. To quantify this tradeoff, there are two main performance metrics Probably Approximately
correct (PAC) bounds and Regret bounds.

3.1 PAC

Tasks are performed over a horizon H which may be infinite but the system can be reset after some time
Hr. The optimal achievable cost is V∗ and the number of episodes for which the policy π is not ε-optimal
(Vπ > V∗ + ε) is Nε. A policy is said to be episodic (ε,δ)-PAC if after T episodes it satisfies

P[Nε > (nx, nu, H.
1

ε
,

1

δ
)] ≤ δ (12)

which guarantees the chosen policy is ε-optimal on all but a number of episodes polynomial in the
parameters with probability at least 1− δ. The algorithm normally operates in two phases, pure exploration
to approximate the system model then a exploitation where the model is used to create a control policy.
Informally, PAC can be thought of the number of episodes required to have an ε-optimal policy.

Utilizing PAC bounds for LQR can be done for both an episodic set up as well as in the single-trajectory
case. Previously in [2] its been shown that LQR with asymptotic average cost is episodic PAC-learnable via
injecting white in time Gaussian noise to the open-loop system over at most (nx, nu, Hr,

1
ε , log 1

δ ) episodes
followed by least-squares system identification and the robust synthesis method to guarantee

P[Vπ − V∗ ≥ ε] ≤ δ (13)

which can be restated in the robust synthesis framework as Ĵ − J∗ <
∼
J∗O(ε) with probability at least

1− δ as long as N >
∼

σ2
w(n+p) log 1

δ

λmin(ΛC)ε2 . Where as defined earlier Ĵ represents the learned controller on the true

system, J∗ is the optimal performance, d is the number of states and p is the number of inputs, and
Similarly, in a single-trajectory over an infinite horizon a policy π can be characterized as PAC-learnable

if
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P[Nε > (nx, nu,
1

ε
,

1

δ
)] ≤ δ (14)

Which guarantees the number of time-steps, Nε, where Vπ(xt) > V∗(xt) + ε to be less than poly( 1
ε , log 1

δ )
with probability 1− δ. Where Vπ(xt) represents the cost-to-go from state xt achieved by a policy and V∗ is
the optimal cost-to-go that can be achieved.

The limits of PAC bounds is that it is only penalized for sub-optimality above ε and is not guaranteed
to converge to optimal since it can ceases learning after it is ε-optimal.

3.2 Regret

Regret bounds evaluate the quality of an adaptive policy by comparing its running cost to a baseline. Here
bT is the baseline cost at time T to be compared to the regret incurred by a policy.

Rπ(T ) :=
T∑
t=0

ct(xT , πt(x0:t, u0:t−1))− bT (15)

The two most common regret guarantees are expected regret

E[Rπ(T ) ≤ poly(nx, nu, T )] (16)

and high probability regret.

P[Rπ(T ) ≥ poly(nx, nu, T,
1

δ
)] ≤ δ (17)

Regret bound for LQR are in the form of

Rπ(T ) :=

T∑
t=0

xTt Qxt + uTt Rut − TV∗ (18)

with V∗ being the optimal asymptotic average cost achieved by the true optimal LQR controller. The
policy from this can be shown to be ut = K̂xt + ηt, where K̂ = dlqr(Â, B̂, Q,R) is the solution to LQR with
estimated dynamics and has exploration in the form of ηt ∼ N (0, σ2

η,tI) which injects some noise into the
control input. This achieves a regret bound of

Rπ(T ) ≤ poly(nx, nu, log(
1

δ
))O(T

1
2 ) (19)

Similarly, moving this again to the robust synthesis framework ĴT − TJ∗ ≤ Õ(T 2/3) for moderate uncer-
tainty [3] and ĴT − TJ∗ ≤ Õ(T 1/2) for small uncertainty [4].

The limits of regret bounds is that it has no worst-case guarantee because it only tracking the integral of
sub-optimal behaviour and cannot distinguish between a few severe mistakes and many small ones. However
it is different from PAC in that all sub-optimal behaviour is tracked so a balance between exploration and
exploitation must be made.

3.3 Uniform-PAC

To handle the downsides of both PAC and Regret bounds a new framework was proposed in [5] to satisfy
both PAC and high probability regret bounds. This is done by simultaneously for all ε > 0 selecting an
ε-optimal policy on all episodes except for a number that scales polynomially with 1

ε with high probability.
The key insight into proving these bounds is to leverage time-uniform concentration bounds such as the
finite-time versions of the law of iterated logarithm which gives horizon-dependent confidence levels.
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