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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

This script is the second iteration of instruction on Robust Control with an introduction into structured
uncertainty. This document will focus exclusively on the small gain theorem, structured singular value,
KYP Lemma, and integral quadratic constraints (IQCs).

1 Introduction

This is a continuation of the discussion on robust stability. We start with a generalized plant seen in Figure
1. This plant is built to have two outputs, controlled and measured, denoted properly below in equations 2
and 3 respectively.

xt+1 = Axt +B1wt +B2ut State (1)

zt = C1xt +D12ut Controlled Output (2)

yt = C2xt +D21ut Measured Output (3)

Pij = Ci(zI −A)−1Bj +Dij (4)

Figure 1: System P with a feedback controller K.

If we take our generalized plant and refer to it as system M and place it in a feedback loop with some
uncertainty ∆, which is bounded but stable, we have a new system visualized in Figure 2. This is the Linear
Fractional Transform (LTF) representation of uncertainty. This connection is robustly well-connected if
(I−M11∆)−1 exists for all ∆ ∈ D. As defined in class, robust well-connectedness is synonymous with robust
stability. Furthermore, we proved that robust stability exists if and only if I −M∆ is non-singular for all ∆
∈ ∆a.
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Figure 2: Linear Fractional Transform representation of uncertainty where M is the generalized plant dis-
cussed earlier in a feedback loop with uncertainty set ∆.

2 Small Gain Theorem

Theorem 1. Let Q be a bounded linear operator, ‖Q‖H∞ <∞, and let D = {∆ :=∆ : ||∆||H∞ ≤ 1}. Then
I −Q∆ is non-singular for all ∆ ∈ D if and only if ‖Q‖H∞ <1.

In order for the Small Gain Theorem to apply there are 2 key properties that must hold.

1. Assume M is stable ||M ||H∞ <∞

2. || · ||H∞ is a sub-multiplicative norm needed to establish that the vector space of bounded linear
operators equipped with || · ||H∞ norm forms a Banach Algebra.

Key property 2 allows us to take limits and guarantee existence. In the traditional sense, we would assume
two stable systems M and ∆ are connected via feedback loop as seen in Figure 2. We also assume that we
know these systems in regards to gain.

Proof. If: To prove the if direction, we first look at the small gain. At first glance we can apply the
multiplicative property and bound ||Q∆|| as seen in equation 5. We know that ||Q||H∞ <1 and ||∆|| ≤ 1 by
assumption. Therefore, we can simply deduct equation 6.

If ||Q||H∞ < 1,
||Q∆|| ≤ ||Q|| · ||∆|| (5)

||Q∆|| ≤ ||Q|| · ||∆|| < 1 (6)

With this deduction, we can explicitly construct the (I −Q∆)−1. Express (I −Q∆)−1 as a geometric series,
seen in equation 7 then prove that this series converges and exists through the triangle inequality and our
previous deduction.

(I −Q∆)−1 =

∞∑
t=0

(Q∆)t (7)

||
T∑
t=0

(Q∆)t||H∞ ≤
T∑
t=0

||(Q∆)t||H∞ ≤
T∑
t=0

||Q∆||tH∞ (8)

Equation 8 shows the use of the triangle inequality. We then can simply apply the solution we know for the
geometric series as the limit approaches ∞, seen in equation 9 .

lim
x→∞

T∑
t=0

||Q∆||tH∞ =
1

1− ||Q∆||
(9)
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Only if: If ||Q|| ≥ 1, construct a ∆, where ||∆|| ≤ 1, such that I − Q∆ is singular. We start with the
observation in equation 10. Normally, the spectral norm of a matrix would equal that of its transpose but
in this case it is conjugate tranpose due to Q’s complex values. Now forward, we will refer to λmax(QQ∗)
as λ.

||Q||2H∞ = ||Q∗||2H∞ = λmax(QQ∗) ≥ 1 (10)

Through the definition of an eigenvalue, we know that λI −QQ∗ is singular. λ 6= 0 which allows the scaling
operation in equation 11 and does not change its singular status.

1

λ
· (λI −QQ∗) = I − QQ∗

λ
(11)

By writing equation 11 using our definition of λ, we produce equation 12 and claim that ∆ := Q∗

||Q∗||2H∞
.

Then we apply the H∞ norm to ∆ in equation 13 which completes the construction of our counter example.

I − QQ∗

||Q∗||2H∞
(12)

||∆||H∞ =
||Q∗||H∞
||Q∗||2H∞

=
1

||Q∗||H∞
≤ 1 (13)

Therefore, through this proof we have shown that the condition is both necessary and sufficient.

3 Scaled Small Gain Test

Small gain is a sufficient but a conservative bound. When working with a block diagonal, defined in equation
14, ||M || ≥ 1 holds no weight and does not really imply anything. More specifically it does not imply that
I −M∆ is singular for some uncertainty in ∆a. In order to scale things we use a trick that involves the use
of a commutant set, introduced in equation 15.

∆a = ∆ : ||∆|| ≤ 1,∆ = blkdiag(∆1,∆2, . . . ,∆d (14)

G = Γ : Γ∆ = ∆Γ, Γ−1 exists (15)

The commutant set is the set of operators that commutes with any ∆ within the block diagonal, ∆a, of
uncertainty. With the commutant set we plan to prove that I −M∆ is singular.

3.1 Proof of Small Gain Test with Block

Due to the fact that inverse, Γ−1, shares the same communtant properties we can rewrite I −M∆, seen in
equation 16. This provides us now with a scaled small gain, now slightly altering our proof. Now I−M∆ is
non-singular if and only if I − ΓMΓ−1∆ is non-singular. If there exists a Γ such that ||ΓMΓ−1|| < 1 then
the system is robustly well-connected.

Γ(I −M∆)Γ−1 = I − ΓM∆Γ−1 = I − ΓMΓ−1∆ (16)

The proof is the same operational steps as the small gain proof seen above in Section 2.



Lecture 8: A Whirlwind Tour of Robust Control 2 4

4 Kalman-Yakubovich-Popov (KYP) Lemma

One of the most fundamental tools in systems theory is the Kalman-Yakubovich-Popov (KYP) Lemma. In
short, Popov introduced a criterion that gave a frequency condition for stability of a feedback system with a
memoryless nonlinearity. In respect to the previous examples, KYP is applied to our feedback uncertainty
system and provided a computational test.

Theorem 2. 1 Give A, B, M , with det(ejωI −A) 6= 0) for ω ∈ R and (A,B) controllable, the following two
statements are equivalent:

1.

[
(ejωI −A)−1B

I

]∗
M

[
(ejωI −A)−1B

I

]
≤ 0 ∀ω ∈ R.

2. There exists a matrix P ∈ Rnxn such that P = PT and M +

[
ATPA− P ATPB
BTPA BTPB

]
≤ 0. The corre-

sponding equivalence for strict inequalities holds even if (A,B) is not controllable.

At this point, we will prove the sufficiency direction for KYP, where the linear matrix inequality (LMI)
implies the norm condition.

Proof. Suppose there exists a P that satisfies the LMI given above. We want to show that the LMI implies
the norm condition on the system. The full LMI, equation 17, as it pertains to M(z) = C(zI −A)−1B+D,

which is a stable, bounded linear time invariant (LTI) operator. M =

[
C
D

]
·
[
C D

]
. We then pre and post

multiply the LMI.

[
xTt wTt

]([C
D

]
·
[
C D

]
+

[
ATPA− P ATPB
BTPA BTPB

])[
xt
wt

]
≤ 0 (17)

After some strategic multiplication and defining our measured output below, equations 18 and 19, we can
rewrite our LMI as in equations 20, 21, and 22.

xt+1 = Axt +Bwt, x0 = 0 (18)

zt = Cxt +Dwt (19)

(Axt +Bwt)
TP (Axt +Bwt)− xTt Pxt + (Cxt +Dwt)

T (Cxt +Dwt)− wTt wt ≤ 0 (20)

xTt+1Pxt+1 − xTt Pxt + zTt zt < wTt wt (21)

xTt+1Pxt+1 − xTt Pxt + ||zt||22 < ||wt||22 (22)

This becomes a telescoping sum seen in equation 23 and xT0 Px0 goes to 0 per the definition in equation 18.
Then taking the limit as t→∞ of equation 23 we get equation 24, which leads us into the norm condition
as previously described.

T∑
t=0

||zt||22 + xTt+1Pxt+1 − xT0 Px0 <
T∑
t=0

||wt||22 (23)

lim
t→∞

T∑
t=0

||zt||22 + xTt+1Pxt+1 − xT0 Px0 <
T∑
t=0

||wt||22 = ||z||2l2 < ||w||
2
l2 =

||Mw||2l2
||w||2l2

< 1, ∀w, t, l2 (24)

1 [1]
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I will point you to [1] for the proof of the sufficient direction, as it is difficult and complicated.

4.1 Structured Uncertainty Proposition, Proposition 8.26

Suppose M(z) = C(zI −A)−1B +D is a stable, bounded LTI operator. Then the following are equivalent:

1. There exists Γ ∈ G such that ||ΓMΓ−1|| < 1.

2. There exists Γ ∈ G such that Γ is real and positive such that ||Γ 1
2MΓ

−1
2 || < 1

3. There exists P > 0 and Γ ∈ G, Γ is real and positive, such that[
ATPA− P ATPB
BTPA BTPB − Γ

]
+

[
CT

DT

]
Γ
[
C D

]
< 0

Due to their equivalence, proving one of the pieces of the proposition will hold true for the rest of them.
Thereby, I will select the second condition to manipulate. Equation 25 below is an expansion of M and shows

that B, C, and D will be scaled by the Γ
1
2 and Γ

−1
2 terms. Then we take the those scaled terms and plug

them into a structure similar to equation 17 with pre multiplication of

[
I 0

0 Γ
1
2

]
and post multiplication of[

I 0

0 Γ
1
2

]
. This is expounded in equation 26.

Γ
1
2MΓ

−1
2 = Γ

1
2C(zI −A)−1BΓ

−1
2 + Γ

1
2DΓ

−1
2 (25)

[
I 0

0 Γ
1
2

] [
xTt wTt

]([C
D

]
·
[
C D

]
+

[
ATPA− P ATPB
BTPA BTPB

])[
xt
wt

] [
I 0

0 Γ
1
2

]
≤ 0 (26)

Since we know that the setup from equation 17 is a positive definite matrix which is being sandwiched by
symmetric positive matrices, we can assume that the conditions do not change. This then refers back to the
idea of a scaled small gain test previously discussed in Section 3.

5 Structured Singular Value

The Structured singular value addresses the a problem where there is more structure in the uncertainty of
the system. In the slides, we spoke about scalar and matrix uncertainties with restrictions which would
apply the idea of a structure singular value. This is necessary because even with a small gain or scaled small
gain test is still very conservative in bounding.

Definition 1. Given an uncertainty set ∆, the structured singular value of an operator M is

µ(M ,∆) :=
1

inf{||∆|| : ∆ ∈∆ and (I −∆M)is singular}
,

if the infinmum is finite or defined. Otherwise µ(M,∆) = 0.

The structured singular value can be applied to structured uncertainty examples such as the following.

1. Single Uncertainty: ∆s =
{
δI : δ ∈ C, 0 < |δ| ≤ 1

}
2. Block Diagonal Uncertainty: ∆ ∈ Cnxn : ∆ =

∆1 0
. . .

0 ∆r


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I use ∆ to define a certainty set in the above equations. In item 1, we see an uncertainty set where the
diagonal element, δI, is a one singular value between 0 and 1. This makes the computation of the structured
singular value pretty straightforward.

||∆|| = σmax(∆) = |δ| ≤ 1 for all∆ ∈∆s

In words, we are saying that any uncertainty constrained to the set of ∆s then we can find the eigenvalue,
λ of operator M .

|I −A∆| = |I − δM | = 0 = δ|δ−1I −M |

We then set the eigenvalue λ = δ−1 and find the new solution below. This proves that λ is an eigenvalue of
M by the eigenvalue equation.

|λI −M | = 0

This also raised the question of bounds for δ and why it cannot be 0. If δ = 0 then it would invalidate the
first step, making the determinant, |I − δM |, = 1.
The second example is dealing with a an uncertainty set that is a matrix of blocks, ∆x, that each of a scalars
along the diagonals as ∆i = δiI. If you could imagine, this process has the same cruxes as the first example
you just have to proceed for every block in the uncertainty set.
In general it is about NP-hard to compute the structured singular value, but it is very well-studied. In
addition, good computationally tractable upper and lower bounds exist to better understand the

5.1 S Procedure

The S-procedure is used when your uncertainty is not linear, exemplified in equation 27 where we would
want to prove stability. In this case, we would use the Lyapunov function, V (x) = xTPx, P > 0, to prove
stability. Note the lipschitz bound placed on ||g(xt)||.

xt+1 = Axt + g(xt), ||g(xt)||2 ≤ γ||xt||2 (27)

More specifically we would need V (xt+1)−V (xt) ≤ −εV (xt). Equation 27 shows the difference between our
next state and current state cannot be any larger than some scaled version of the current state, where ε > 0.
This is a condition necessary for exponential stability for some ε > 0. This can be equivalently written in
the form in equations 28 and 29 by plugging in the dynamics and manipulating the inequality. Note the
substitution of g(xt) = zt.

(Axt + zt)
TP (Axt + zt)− xTt Pxt < −ε(xTt Pxt), ∀t where zt = g(xt) (28)

(Axt + zt)
TP (Axt + zt)− xTt Pxt + ε(xTt Pxt) < 0⇒ (Axt + zt)

TP (Axt + zt)(1− ε)xTt Pxt < 0 (29)

[
xt
zt

]T [
ATPA− (1− ε)P ATP

PA P

] [
xt
zt

]
≤ 0 (30)

Equation 30 shows a matrix representation of equation 29. Notice the pre and post multiply that is similar
to what we see in the KYP Lemma in Section 4. At this point, we would only need to find a P that satisfies
the inequality P > 0. By renaming the inequality in equation 30 as ∗, we need to find P > 0 such that (∗)
∀zt = g(xt). In order to encode this information we can rewrite as seen in equation 31.[

x
z

]T [
γ2I 0
0 −I

] [
x
z

]
≥ 0⇒ γ2||x||2 ≥ ||z||2 (31)
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Equation 31 enforces that if z is produced by g(x), which satisfies the lipschitz bound, then the inequality ∗
is also satisfied. The use of the S-procedure allows us to prove that this holds true.
In an abstract sense, vTF1v ≥ 0 ⇒vTF0v ≥ 0, where Fi = FTi . When referring to the problem stated
above, vTF1v ≥ 0 is a reference to the constraint, lipschitz bound, from above and vTF0v ≥ 0 is the stability
constraint, which is implied from the constraint.
To prove the sufficient condition:

Proof. ∃τ ≥ 0 such that F0 ≥ τF1, in the positive semi-definite sense.

zTF1z ≥ 0⇒ zTF0z ≥ τzTF1z ≥ 0 (32)

This is a necessary and an exact condition. The necessary direction is very hard to prove, but can be raised
through proving if ∃u such that uTF1u > 0.

5.2 Lossless S-Procedure

In reference to the example presented in Section 5.1, specifically equation 30, if we set ε = 0, we would
have vTF1v ≥ 0, where v 6= 0, which implies vTF0v > 0. This would bring us to the same result where the
implication is true if and only if F0 > τF1 as long as the constraint qualification, ∃u such that uTF1u > 0,
holds. We refer to this as a lossless S-procedure.
Therefore to complete our example and link our bounds and stability constraint we proceed as below.

True if and only if ∃τ ≥ 0 and P > 0 such that

τ

[
γ2I 0
0 −I

]
+

[
ATPA− (1− ε)P ATP

PA P

]
< 0 (33)

5.3 Lossy S-Procedure

The Lossy S-procedure is best exemplified when dealing with multiple quadratic forms. For example, we let
F0, ..., Fk be symmetric matrices and we want a sufficient condition such that vTF1v > 0, ... , vTFkv > 0
⇒vTF0v ≥ 0. This condition brings up the question of when does nonnegativity of a set of quadratic forms
imply nonnegativity of another set. A simple sufficient condition for this is to suppose there are τ1, ..., τk ≥ 0,
with F0 ≥ τ1F1 + ... + τkFk. This solidifies our original sufficient condition, with no necessary conditions
known, meaning that more assumption are needed but lossless versions do exist. This is a Lossy S-Procedure.
In fact what we have just designed is a special case of an Integral Quadratic Constant (IQC), which extends
t the frequency domain.

6 IQC

This a relatively brief introduction to IQCs. To gather a more detailed view in IQCs and how they could
benefit your work I would recommend [2] and [3].

The term integral quadratic constraint (IQC) was introduced in [3], where they explored continuous-time
dynamical systems which included the constraints present in integrating quadratic functions. This is now
known as a popular technique in control theory to understand the behavior of partially known components,
similar to the idea of uncertainty that we have been discussing. We will be adapting the classical IQC theory
for algorithm analysis using discrete-time dynamical systems.

The general idea of using IQC’s is to replace the troublesome or uncertain components of an interconnected
dynamical system. By placing a quadratic constraint on its inputs and outputs, we can understand all
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possible instances of the component and certify that the system performs as desired.

To relate back to class, we can use the Lipschitz bound to characterize constraints on the input and output
pairs of (y, u) : u = ∆(y). In this case, we do not exactly know ∆, but we do assume that we know
something of the constraints it imposes on the pair (y, u). Explicitly, let’s assume ∆ is

1. Static and memoryless: ∆(y0, y1, ...) = (g(y0), g(y1), ...) for some g: Rd −→ Rd.

2. g is Lipschitz bounded: ||g(y1)− g(y2)|| ≤ L||y1 − y2|| for all y1, y2 ∈ Rd.

if y = (y0, y1, ...) which is a sequence of vectors in Rd and u = ∆(y), the output of the unknown function,
then Property 2 implies that ||uk − u∗|| ≤ ||yk − y∗|| for all k, where (y∗, u∗) is any pair of vectors satisfying
u∗ = g(y∗). The matrix form can be seen in 34.[

yk − y∗
uk − u∗

]T [
L2Id 0d
0d −Id

] [
yk − y∗
uk − u∗

]
≥ 0 for k = 0, 1, ... (34)

The quadratic coupling of (y, u) is pointwise, meaning that it holds as sparate quadratic constraints on
each (yk, uk). In order to generalize this idea, and couple different k values you must introduce auxiliarty
sequences ζ, z ∈ l2e, with a map Ψ characterized by matrices (AΨ, B

y
Ψ, B

u
Ψ, CΨ, D

y
Ψ, D

u
Ψ) and the recursion

below.

ζ0 = ζ∗ (35)

ζk+1 = AΨζk +ByΨyk +BuΨuk (36)

zk = CΨζk +Dy
Ψyk +Du

Ψuk (37)

This creates an affine map z = Ψ(y,u) and with an assumed reference point (y∗, u∗) we can continue below.

ζ∗ = AΨζ∗ +ByΨy∗ +BuΨu∗ (38)

z∗ = CΨζ∗ +Dy
Ψy∗ +Du

Ψu∗ (39)

We then ensure that equations 38 and 39 have unique solutions (ζ∗, z∗) for any choice (y∗, u∗) through
requiring ρ(AΨ) < 1. Equation 40 characterizes our (y,u) pair in terms of the quadratic constraints, this in
effect will allow us to analyze a system where our uncertainty is abstracted away. We can usually assume
that Ψ is LTI and use equation 40 and Parseval find the equivalent representation found in 41.

z∗Fz =

[
y
u

]∗
Ψ∗FΨ

[
y
u

]
≥ 0 (40)

1

2π

∫ π

−π

[
y(ejω)
u(ejω)

]∗
Ψ(ejω)∗FΨ(ejω)

[
y(ejω)
u(ejω)

]
≥ 0 (41)

[2] gives a detailed description of the different types of IQCs that can be utilized.

7 Computational Example

In this section, I will present an adapted example from MATLAB LMI Control Toolbox where we will verify
the stability of an interconnected control system by using the IQCβ tool box, adapted from the ideas and
topics covered with robust stability and IQCs seen in the lecture notes of Ulf Jonsson [4] and extensions of
Alexandre Megretski. You can find the tutorial and toolbox at [5].
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Figure 3: Two-mass-one-spring system

The problem we will explore is the two-mass-one-spring system as seen in Figure 3. The dynamics of
the system are described in equation 42, for m1 = m2 = 1. In this equation, the state vector x contains the
position and velocity of the masses m1 and m2.

ẋ = Ax+B1(u+ w1) +B2w2 (42)

Below are the given definitions of matrices A,B1, and B2:

A =


0 0 1 0
0 0 0 1
−k k 0 0
k −k 0 0

 , B1 =


0
0
1
0

 , B2 =


0
0
0
−1


Matrix A depends affinely on k. So by letting k = 1.25 + 3

4 k̄, A can be further expressed as A =
A0 +A1k̄A

T
2 , where A0, A1, and A2 are constant matrices and is an unknown constant in the range of [-a,a].

A0 =


0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0

 , A1 =


0
0

−
√
2
2√
2
2

 , A2 =


3
√
2

4

− 3
√
2

4
0
0


Thereby when a = 1, the spring coefficient k will be in the range of [0.5, 2], which comes from the original
control design specifications of the original problem. Also proposed from the original problem is a 4th order
stabilizing controller u = Cc(sI −Ac)−1Bcx2.

Ac =


0 −0.7195 1 0
0 −2.9732 0 1

−2.5133 4.8548 −1.7287 −0.9616
1.0063 −5.4097 −0.0081 0.0304

 , Bc =


0.720
2.973
−3.37
4.419

 , CTc =


−1.506
0.494
−1.738
−0.932


The mass-spring control system is expressed as a block diagram in Figure 4, where B1, B2, and C are

[0010]T , [000− 1]T and [0100a] respectively.
Next I will compute an estimate of the energy gain from [w1, w2] to x2. Initially estimating the gain

from some external disturbance to any internal signal in the system is the best way to check for stability. A
finite gain implies stability. This will all be defined in a MATLAB workspaces and will incorporate IQCβ
and the MATLAB Control Systems Toolbox.

Start with initializing the abstract IQC-environment, which is necessary for the use of IQCβ. Then I
define the signals and design how they relate to the system. At this stage, the uncertainty is k̄, therefore that
block will be removed and will later be replaced by set-valued functions defined by IQCs. The basic signals
(w1, w2, w3) cannot be derived from any other signals through a constant LTI transformation. They are
considered external disturbances. Figure ?? shows the the breaking of loop found in Figure 4 that described
every signal as a LTI transformation of the other signals and introduced an extra basic signal u. We then
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Figure 4: Block diagram of the two-mass-one-spring system

define x, x2, and uc as LTI transformations of basic signals including u. I then define the 4 basic signals
(w1, w2, w3, and u) as uc == u.

1 abst_init_iqc; %Initialize IQC -environment

2

3 %Define basic signals

4 w1=signal;

5 w2=signal;

6 w3=signal;

7 u=signal;

Now we relate the remaining signals (x, x2, v, uc) in the system to the basic signals we just defined.

1 %Relate basic signals to the remaining signals

2 x=Gp*(A1*w3+B1*(u+w1)+B2*w2);

3 v=transpose(A2)*x;

4 x2=x(2); %Also x2 = C*x

5 uc=Gc*x2;

Now we design the IQC. More explicityly we must relate w3 and v with a set-valued function. Because
|k̄| ≤ a we know that ∫ ∞

0

(a2|v(t)|2 − |w3(t)|2)dt ≥ 0

The inequality remains valid with the multiplication of any scalar larger than 0, so the following parameter-
ized inequality holds for all pairs of (w3.v) which satisfy w3 = k̄v. In this case M ≥ 0.∫ ∞

0

M · (a2 · v2 − w2
3)dt ≥ 0

1 %Define IQC

2 M=variable; %creates LMI toolbox variable

3 M > 0;

4 v’*( a 2 *M)*v-w3 ’*M*w3 >0; %descibes the IQC using toolbox

5 u == uc;

Now we will execute the optimizer to estimate the L2-gain from [w1; w2] to x2. The iqc gain tbx.m script
will form an optimization problem which corresponds to the worst case L2-gain estimation problem. This
formed as a semi-definite program (SDP). Then the LMI Control Toolbox provides the genetic SDP solver
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to solve the optimization problem. More explicity, the solver will choose the variable parameters M and g
so that ∫ ∞

0

(g(w2
1 + w2

2)− x22)dt >

∫ ∞
0

M(a2 · v2 − w2
3)dt

holds for all non-zero L2 signals. The solver will also attempt to minimize g.

1 %run solver to find values for g and M

2 g = iqc_gain_tbx ([w1;w2],x2)

3 value_iqc(M)

Below is output from Matlab Terminal.

1 iqc_extract: processing the abst log information ...

2 Processing cst , var , and lin , counting ...

3 scalar inputs: 4

4 states: 26

5 simple q-forms: 2

6 Processing signals and quadratic forms ...

7 LMI #1 size = 1 states: 0

8 iqc_extract done OK

9

10 iqc_gain_tbx ...

11 defining the original variables ...

12 defining the non -KYP LMIs ...

13 defining the KYP LMIs ...

14 Solving with 353 decision variables ...

15

16 Solver for linear objective minimization under LMI constraints

17

18 Iterations : Best objective value so far

19

20 1

21 2

22 3

23 4

24 5

25 6

26 7

27 8

28 9

29 10

30 11

31 12

32 13

33 14

34 15

35 16

36 17

37 18

38 19

39 20

40 21

41 22

42 23

43 24

44 * switching to QR

45 25

46 26

47 27 389.671972

48 28 359.120709

49 29 359.120709

50 30 334.780009

51 31 334.780009
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52 32 334.780009

53 33 308.604259

54 34 308.604259

55 35 308.604259

56 36 308.604259

57 37 308.604259

58 38 308.604259

59 39 308.604259

60 40 308.604259

61 41 308.604259

62 42 308.604259

63 43 308.604259

64

65 Result: feasible solution

66 best objective value: 308.604259

67 f-radius saturation: 89.312% of R = 1.00e+09

68 Termination due to SLOW PROGRESS:

69 the objective was decreased by less than

70 1.000% during the last 10 iterations.

71

72

73 g =

74

75 17.5671

76

77

78 ans =

79

80 94.5067

The final result shows 94.5067. This shows that the value of M need to achieve L2 gain estimation (g)
17.5671 is 94.5067. According to the tutorial the final result should show 117.9644, which means the value
of M to obtain L2-gain estimation (g) 17.4074 is 117.9644.
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