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1 Model Based Reinforcement Learning and Control

What do I have to do in order to control a system in which I do not know if my model is exactly true? There
is uncertainty inherent to the output of the algorithm. With finite data how do we quantify this uncertainty.
This will be a quick but wide overview of robust control.

Figure 1: Learning and Control Pipeline

To put this into perspective, previously we looked at system identification with model estimates and error
bounds to be put into a robust controller. It was proved that the errors bounds could be held with high
probability. We will look to test those bounds adversarially in order to do robust control.
With enough experiments N can we prove with probability 1-δ that we can synthesize a robust controller
that is provably near optimal and stabilizing with a relative performance bound given by:

Ĵ − J∗
j∗

≤ C(robustness, excitability)

√
(d+ p)log( 1

δ )

N

Where d is the number of states and p is the number of inputs. Excitability is the 1 over the minimum
singular value of the controllability grammian. So how can we combine this uncertainty in our model with
robust control?

2 Generalized Plant

Let’s introduce the plant, which is a generalized linear dynamical system with two outputs.

Figure 2: Generalized plant

This is a generalized state feedback system where B1wt is the process disturbance noise and B2ut is the
input. zt is the controlled output in which we are trying to keep small, i.e a weighted sum of the deviations
from the point of the state that we are trying to maintain. Finally, yt is the measured output which can be
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used for the feedback controller. P can be looked as a transfer function which maps signals to signals. The
map is given by:

Pij = Ci(ẑI −A)−1Bj +Dij

Now given a feedback controller K:

Figure 3: Feedback Controller

Where y is the measured output and u the input. We want to find a linear time-invariant controller
ut = K(y0:t) that minimizes the ”size” of the map from w −→ z. Take the ẑ transform of our controller such
that:

u = Ky

Where bold font denotes transfer matrices and signals and normal font to denote static matrices and
instantaneous values in time. Working in transfer function domain, we take the ẑ transform of our dynamics
in order to get the mapping w −→ z:

x = (ẑI −A)−1B1w + (ẑI −A)−1B2u

z = C1(ẑI −A)−1B1w + (C1(ẑI −A)−1B2 +D12u)u

z = P11w + P12u [Substitute in: u = Ky]

z = P11w + P12Ky (1)

y = C2(ẑI −A)−1B1w + C2(ẑI −A)−1B2u +D21w

y = P21w + P22u [Substitute in: u = Ky]

y = P21w + P22Ky (2)

y = (I −P22K)−1P21w

z = (P11 + P12K(I −P22K)−1P21)w (2) in (1)

z =: S(P,K)w

The goal is to minimize the mapping from w −→ z which can be given as:

min
K
||S(P,K)w||norm

In the following sections we will look to define different norms that can be used to minimize the linear
mapping.

3 Three Representations of Linear Maps

z = (P11 + P12K(I −P22K)−1P21)w

=: S(P,K)w
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If we are given K that stabilizes P then S(P,K) is a linear map acting on signal w. The goal is minimize
the ”amplification”, ”gain”, or ”size” of map S(P,K) taking w−→z.

How do we measure the size of S(P,K) which we will now call M is determined by how we model
disturbance w. We start with analysis, i.e., assume we are given some stable closed loop system M such
that:

z = Mw

Assuming M is stable, it has a finite gain which does not take a finite w to and infinite z. Let’s consider
different norms, and their interpretation from a modeling perspective, for measuring ”size” of M.

There are three representations of these linear maps. Consider a bounded linear-time-invariant operator
M: lq∞ −→ lp∞. q and p are the dimensions of the bounded input, bounded output. We can think of M in
three ways:

1. As a transfer matrix acting via multiplication: z(z) = M(z)w(z), where M(z) =
∑∞
t=0

1
ztMt [Power

series expansion]

2. As a linear filter acting via convolution: zt =
∑t
k=0Mkwt−k,∀t ≥ 0. wt−k is the history of disturbance.

3. As a semi-infinite block Toeplitz matrix mapping signals to signals. Over a finite-time horizon this
map should be used with block lower triangular map and the same values along the block diagonals:

Figure 4: Semi-infinite block Toeplitz Matrix

Let’s formalize the operator M in terms of the linear time-invariant systems. In our application, M is
called the time-invariant shift operator.
A shift operator Sτ : L2(−∞,∞) −→ L2(−∞,∞) is defined by:

y = Sτu⇐⇒ y(t) = u(t− τ)

This also known as the τ -delay.

Definition of time-invariance.
An operator G : L2(−∞,∞) −→ L2(−∞,∞) is called time-invariant if:

GSτ = SτG ∀τ ≥ 0

Theorem.
An operator G : L2(−∞,∞) −→ L2(−∞,∞) is time-invariant if and only there exists a function Ĝ ∈ L̂∞(jR)
such that the multiplication operator satifies:

G = Φ−1MĜΦ
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4 System Norms

Consider a bounded linear time invariant operator M: lq∞ −→ lp∞ such that z = Mw

Theorem [ref: pg20] The space of all bounded, linear, causal operators from lp∞ to lq∞ is given by the
space of all infinite block lower triangular matrices, with a finite induced norm, i.e.,

sup
k
|(Rk)|1 <∞,

where (Rk) is the kth dimensional block of the matrix R:


R(0, 0) 0 . . . 0
R(1, 0) R(1, 1) 0 . . .

...
...

...
. . .

R(k, 0) R(k, 1) . . . R(k, k)



Equivalently,

sup
i
|(R(i, 0)) . . . R(i, i)|1 <∞

1. Let wt be iid N (0, I), characterizes average energy amplification from w−→ z as:

||M||2H2
=

∞∑
t=0

||MT ||2F

=
1

2π

∫ π

−π
TrM (ejw)MT (e−jw)dw

2. For l2-bounded w, worst case energy amplification measured by:

||MT ||H∞
= lim
T−→∞

∣∣∣∣M̄T

∣∣∣∣
2−→2

= sup
ω∈[−π,π]

∣∣∣∣M(ejw)
∣∣∣∣

2−→2

3. For l∞-bounded w, worst case real-time deviations as measured by:

||M||L1
= lim
T−→∞

∣∣∣∣M̄T

∣∣∣∣
∞−→∞ = max

1≤i≤p

q∑
j=1

∣∣∣∣Mij
∣∣∣∣
l1

Where the H∞ and L1 norms are lp −→ lp induced norms.

4.1 H2 (LQR) Norm

Let wt be iid N (0, I) and z = Mw.
Looking at w, it is often used to model natural stochastic processes such as thermodynamic noise, aggre-
gate behaviors, etc. The natural notion is to characterize average ”energy amplification” of white noise as
measured by finite output. Suppose we want to characterize:

lim
T−→∞

1

T

T∑
t=0

E ||zt||22
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Look at the above as the system’s behavior as it goes to some steady state distribution. Therefore, it only
depends on its covariance.
For a finite T, zt = Mtwt

=
1

T

T∑
t=0

Ew ||zt||22

z(T ) =


z0

z1

...
zT

 w(T ) =


w0

w1

...
wT

 M̄T =


M0

M1 M0

...
. . .

. . .

MT . . . M1 M0



=
1

T
Ew
∣∣∣∣∣∣z(T )

∣∣∣∣∣∣2
2

z(T ) = M̄Tw
(T )

=
1

T
Ew(w(T ))T M̄T

T M̄Tw
(T )

=
1

T
EwM̄T

T M̄Tw
(T )(w(T ))T [cyclic property of trace on w(T )]

=
1

T
Tr(M̄T

T M̄T )

=
1

T

∣∣∣∣M̄T

∣∣∣∣2
F

=
1

T
(T ||M0||2F + (T − 1) ||M1||2F + · · ·+ ||MT ||2F )

Take the limit of T −→∞:

=

∞∑
t=0

||MT ||2F

Use Parseval’s Theorem to write the above as an integral over frequency. Which states that the fourier
transform does not change the 2 norm.

=
1

2π

∫ π

−π
TrM∗(ejw)M(ejw)dw

:= ||M ||2H2

This is known as the H2 norm squared. We are computing the average energy amplification of white noise
by the system.

4.2 H∞ Norm

4.2.1 Finite case

Suppose the disturbance process has bounded finite energy :

||w||22 :=

∞∑
t=0

||wt||22 <∞
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We can expect signals outputted by stable systems satisfy this property. Used to capture effects of unmodeled
dynamics on behavior. Without any spectral or statistical properties, natural notion is to characterize worst-
case gain:

||M||H∞
:= sup
||w||22≤1

||Mw||22 [signal −→ signal, l2 −→ l2, time domain interpretation]

Find the finite w to max the 2 norm of z. Starting with the finite horizon setting:
z0

z1

...
zT

 =


M0

M1 M0

...
. . .

. . .

MT . . . M1 M0



w0

w1

...
wT

 −→ ||MT ||H∞
=
∣∣∣∣M̄T

∣∣∣∣
2−→2

Which can be looked at as the maximum singular value in the finite time horizon. To prove, we have
z(t) = M̄Tw(T )∣∣∣∣M̄T

∣∣∣∣
2−→2

= sup
||w||22≤1

∣∣∣∣M(T )w(T )

∣∣∣∣2
2

= sup
||w||22≤1

wT(T )M̄
T
T M̄Tw(T ) Let M̄T = UΣV T

= sup
||w||22≤1

wT(T )V (ΣTΣ)V Tw(T ) Notice
∣∣∣∣V Tw∣∣∣∣2

2
= ||w||22 since V is on B

= sup
||w||22≤1

wT(T )(Σ
TΣ)w(T ) For ΣTΣ = diag(σ2

1 , σ
2
2 , . . . , σ

2
r)

= sup
||w||22≤1

wT(T )diag(σ2
1 , σ

2
2 , . . . , σ

2
r)w(T ) (σ1 ≥ σ2 ≥ · · · ≥ σr > 0)

= σ2
1

||MT ||H∞
=
∣∣∣∣M̄T

∣∣∣∣
2−→2

= σ1 = σmax(M)

4.3 L1 Norm

Suppose the disturbance process has bounded magnitude:

||w||l∞ = sup
t≥0
||wt||∞ <∞

Consider characterizing the worst-case gain of a system, z = Mw such that:

||M||L1
= sup
||w||∞≤1

||Mw||∞ [signal −→ signal, l∞ −→ l∞, time-domain interpretation]

This is useful for real-time safety constraints, i.e. actuator saturation, bumps in a path.

4.3.1 Finite case

In the finite horizon setting:
z0

z1

...
zT

 =


M0

M1 M0

...
. . .

. . .

MT . . . M1 M0



w0

w1

...
wT

 −→ ||MT ||L1
=
∣∣∣∣M̄T

∣∣∣∣
∞−→∞
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∣∣∣∣M̄T

∣∣∣∣
∞−→∞ = sup

||w(T )||∞≤1

∣∣∣∣∣∣M̄Tw
(T )
∣∣∣∣∣∣
∞

= sup
||w(T )||∞≤1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


M0

M1 M0

...
. . .

. . .

MT . . . M1 M0



w0

w1

...
wT


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∞

Pick the largest row, i.e. the last row

= sup
||w(T )||∞≤1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
[
MT MT−1 . . . M1 M0

]

w0

w1

...
wT


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∞

Where, z ∈ Rp and w ∈ Rq

= max
1≤i≤p

(T+1)q∑
j=1

|M ij |

= max
1≤i≤p

T∑
t=0

q∑
j=1

|M ij | Where T is blocks, i rows, j columns

= max
1≤i≤p

q∑
j=1

T∑
t=0

|M ij |

= max
1≤i≤p

q∑
j=1

∣∣∣∣Mij
∣∣∣∣
l1

Where M ij operator can be defined as:

M(z) =

M11(z) M12(z) . . . M1q(z)
...

...
. . .

...
Mp1(z) . . . . . . Mpq(z)


L1 can be thought of as taking the max row sum of a matrix.

5 Modeling Uncertainty

What if our system M is uncertain? How can you ensure that if my nominal model is stable, bounded, etc.,
that any possible realization is well-behaved too? First, we need to explicitly model out uncertainty. We are
going to focus our analysis on the following interconnection:

Figure 5: Framework for modeling uncertainty
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for ∆ ∈ D some set of uncertainty when can we guarantee that this interconnection is stable ∀∆ ∈ D.
Assuming M is stable: [

p
z

]
=

[
M11 M12

M21 M22

] [
q
w

]
q = ∆p

Solve for w −→ z map: Assume (I −M11∆)−1 exists for now.

p = M11q +M12w = M11 +M12w −→ p = (I −M11∆)−1M12w

z = M21q +M22w

z = (M22 +M21∆(I −M11∆)−1M12)w

=: S(M,∆)w

Notice when ∆ = 0 recovers ”nominal” model z = M22w. This is a very flexible framework.

6 Linear Fractional Transform (LFT) Representations of Uncer-
tainty

For the framework [6], we can pick these Mijs to capture our different types of uncertainties in the following
equation: Assuming ((I −M11∆)−1) exists:

z = (M22 +M21∆(I −M11∆)−1M12)w

=: S(M,∆)w

So what if we had:

1. Additive Uncertainty:

z = (Ĝ+ ∆)w ⇐⇒M =

[
0 I

I Ĝ

]
Notice that this is always stable if Ĝ and ∆ ∈ D are stable (M11 = 0).

2. Multiplicative uncertainty:

z = Ĝ(I + ∆)⇐⇒M =

[
0 I

Ĝ Ĝ

]
3. Uncertain state-space matrix:

xt+1 = (Â+ ∆A)xt + wt ⇐⇒ x =
1

z
(Â+ ∆A)x+

1

z
w [z-transform]

[
p
x

]
=

[
(zI − Â)−1 (zI − Â)−1

(zI − Â)−1 (zI − Â)−1

] [
q
w

]
Notice p = x, and q = ∆Ax

x = [(zI − Â)−1 + (zI − Â)−1∆A(I − (zI − Â)−1∆A)−1(zI − Â)−1]w

= (zI − Â−∆A)−1w [Woodbury Matrix Identity (Matrix Inversion)]

Where it is assumed that (I − (zI − Â)−1∆A)−1 and (zI − Â−∆A)−1 exist as maps. This property is
useful for multiple feedback loops and deals with the nominal framework. Finally, this illustrates that
xt+1 = (Â+ ∆A)xt + wt is stable iff, (zI − Â)−1 is stable and (I − (zI − Â)−1∆A)−1 is stable.
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7 Robust well-connectedness, Robust Stability, Robust Perfor-
mance

We have reduced our analysis to determining the stability of a nominal system interconnected with an
uncertain element. Here we show necessary and sufficient conditions where ∆ ∈ D ⇐⇒ ||∆|| ≤ 1 for an
induced norm.

Figure 6: Framework for modeling uncertainty

Assuming ((I −M11∆)−1) exists:

z = (M22 +M21∆(I −M11∆)−1M12)w

=: S(M,∆)w

1. Robust well-connectedness:
The interconnection illustrated in figure [6] is robustly well-connected if (I −M11∆)−1 exists for all
∆ ∈ D. If (M,D) is robustly well-connected, then the map S(M,∆)w is stable and bounded.

2. Robust stability:
Ensuring that (M,D) is robustly well-connected, i.e., that (I −M11∆)−1 exists for all ∆ ∈ D

3. Robust performance:
Ensuring robust stability and ||S(M,∆)|| < γ∀∆ ∈ D

8 Induced Norms

The H∞ and L1 norms defined previously are both lp −→ lp induced norms which can be written as :

||M|| = sup
||w||≤1

||Mw||

All induced norms satisfy a sub-multiplicative property:

||AB|| ≤ ||A|| · ||B||

Which can be thought of as ”the gain of two systems is no larger than the product of the individual gains”.
This property lets us compose maps (systems) through multiplication and remain bounded: allows us to
conclude that the set of bounded maps define a Banach Algebra.

9 Banach Algebra

Banach algebras allows us to take limits and products without worrying about things being badly behaved.
This will be very important for robustness analysis. To define Banach algebras let’s look at operators and
then the sets of linear operators.

For Banach spaces V and Z, the map F: V −→ Z is a bounded linear operator if:
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• Linearity : F (α1v1 + α2v2) = α1F (v1) + α2F (v2) for all v1, v2 ∈ V and α1, α2 ∈ R

• Boundedness: There exists K ¿ 0 such that ||F (v)|| ≤ K ||v|| for all v ∈ V

Sets of Linear Operators

• L(V,Z) is the set of all bounded linear operators mapping V to Z

• L(V) is the set of all bounded linear operators mapping V to itself.

The set L(V,Z) is a Banach space.

• It is a vector space; we have addition and scalar multiplication. e.g.

(F1 + F2)(v) = F1(v) + F2(v)

• It has a norm- the induced norm.

• It is complete.

Therefore, Banach algebras as well as being a normed vector space, the set L(V) has additional structure,
since one map compose maps. We write (F1F2)(v) = F1(F2(v)), giving:

F1, F2 ∈ L(V) =⇒ F1F2 ∈ L(V)

Where the space L(V) is called a Banach algebra. We can use Banach algebra to define small-gain theorem.

10 Small-Gain Theorem

Suppose Q is an element of Banach algebra B i.e. bounded and a linear operator, and D:={∆ : ||∆||H∞
≤ 1}

then:

||Q|| < 1 =⇒ I −Q∆ is invertible, and (I −Q∆)−1 =

∞∑
i=0

(Q∆)i

Note:

• Here we are assuming Q is an element of a Banach algebra. We do not need to use any properties of
Q as a linear map.

• The submultiplicative property implies ||PQ|| ≤ ||P || ||Q||. Hence if ||P || ≤ 1, I − PQ is invertible
for all operators Q with ||Q|| < 1

Proof:
IF: ||Q|| < 1 =⇒ ||Q∆|| ≤ ||Q|| · ||∆|| < 1

(I −Q∆)−1 =

∞∑
i=0

(Q∆)i Limit exists because Banach algebra

||I −Q∆||−1 ≤
∞∑
i=0

(||Q|| ||∆||)i <∞ Since ||Q|| · ||∆|| < 1
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Only IF: Assume ||Q||H2
∞

= ||Q∗||H2
∞

= λmax(QQ∗) ≥ 1

Set λ− λmax(QQ∗) ≥ 1

Then, λI −QQ∗ is singular if λ = ||Q∗||2h∞
by definition of an eigenvalue.

=⇒ I − QQ∗

||Q∗||2H∞

is singular (multiplication by constant only scalar eigenvalues).

Set, ∆ =
Q∗

||Q∗||2H∞

=⇒ ||∆||h∞
=

1

||Q∗||H∞

≤ 1 since, ||Q∗||H∞
≥ 1

Note: ||∆|| ≤ β needs ||Q|| < 1
β , (so ||Q∆|| < 1)

11 Connection to H∞ Optimal Control

Figure 7: Framework of Optimal Control

z = (P11 + P12K(I − P22K)−1P21)w

=: S(P,K)w

Suppose I compute K s.t. ||S(Po,K)||H∞
< 1

γ

Robust stability interpretation: Set M11 = S(P,K), then this says,

Figure 8: Robust Stability

is robustly well-connected ∀∆ s.t. ||∆||H∞
≤ γ
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12 Equivalence between Robust Performance and Robust Stabil-
ity

Robust Performance and Robust Stability are equivalent on an augmented Delta block with respect to two
block uncertainty.

Figure 9: Augmented Delta Block Plant

Theorem (the following are equivalent):

• (I −M11∆1)−1 exists and is bounded and ||S(M,∆1)||H∞
< 1 for all ||∆1||H∞

≤ 1

• (I −M∆)−1 is robustly well connected for all ∆ =

[
∆1

∆2

]
, ||∆1||H∞

, ||∆2||H∞
≤ 1

Proof: (1 −→ 2):

I −
[
M11 M12

M21 M22

] [
∆1

∆2

]
=

[
I −M11∆1 −M12∆2

−M21∆2 I −M22∆2

]
=

[
I

−M21∆1 I

] [
I −M11∆1 −M12∆2

0 I −M22∆2

]
So if I −M∆ is invertible iff I − S(M,∆1)∆2 is invertible for all ||∆2|| ≤ 1, but we know by assumption
that ||S(M,∆1)|| < 1

(2 −→ 1):

So by assumption I −M∆ is invertible for all

[
∆1

∆2

]
, ||∆1||H∞

, ||∆2||H∞
≤ 1

Pick

[
∆1

0

]
=⇒ I −M11∆1

is invertibl for all ||∆1|| ≤ 1

Then you can write:

I −M∆ =

[
I

−M21∆1 I

] [
I −M11∆1 −M12∆2

0 I −M22∆2

]
(Since (I −M11∆)−1 exists) to conclude using small

gain theorem that ||S(M,∆1)|| < 1 for all ||∆|| ≤ 1

13 Analysis of Two-Cart and Spring System

Given [5] the following system of two frictionless carts connected by spring k with uncertain elements, let’s
analyze the robustness of the feedback control system by evaluating the worst case gain of this uncertain
state-space model.
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Figure 10: Two-cart and spring system

Figure 11: Block diagram of two-cart and spring system

The feedback control is given by u1 = C(s)(r − y1) with an input force force u1 and the output being

the position y1. The triple-lead compensator is given by C(s) = 100(s+1)3

(0.001s+1)3 .

The difficulty in controlling this system is the fact that some of the parameters are uncertain to a degree.
The values of the spring constant k and cart masses m1,m2 are known with only an accuracy of 20%.

k = 1.0± 20%

m1 = 1.0± 20%

m2 = 1.0± 20%

In Matlab, the ureal function can be used to create these three uncertain real parameters. Now, let’s
construct the uncertain state-space models for the G1 and G2:

G1 =
1

m1s2
G2 =

1

m2s2

Looking at the block diagram [11], construct the closed loop transfer function.

F = [0;G1] ∗ [1− 1] + [1;−1] ∗ [0, G2] Spring-less inner block F(s)

P = lft(F, k) Connect with spring k

L = P ∗ C Uncertain open-loop model

T = feedback(L, 1) Uncertain closed-loop model

T is a uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states. The model uncertainty
lies in blocks: k, m1, m2. The nominal system can be checked to see if it has negative real parts.

maxrealpole = −0.8232

We can find the robust stability margin of the system, i.e. will the feedback loop remain stable for all possible
values of k, m1, m2 in the specified uncertainty range?
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Matlab’s output using robstab to analyze:
Computing peak... Percent completed: 100/100
System is robustly stable for the modeled uncertainty.
– It can tolerate up to 288% of the modeled uncertainty.
– There is a destabilizing perturbation amounting to 289% of the modeled uncertainty.
– This perturbation causes an instability at the frequency 575 rad/seconds.
– Sensitivity with respect to each uncertain element is:
12% for k. Increasing k by 25% decreases the margin by 3%.
47% for m1. Increasing m1 by 25% decreases the margin by 11.8%.
47% for m2. Increasing m2 by 25% decreases the margin by 11.8%.

Worst case (wcu), the smallest destabilizing parameter relative to nominal values:
k: 1.5773
m1: 0.4227
m2: 0.4227

These values can be interpreted as the closed loop can tolerate up to almost three times as much vari-
ability in the uncertain elements before going unstable. The smallest destabilizing value for each of the
uncertain parameters is also given above.

The worst case gain across frequency of the closed loop T can be found with wcgain.

PeakGain =

LowerBound : 1.0471

UpperBound : 1.0797

CriticalFrequency : 7.7644

With the wcu computed before, we can compute the worst-case closed-loop transfer Twc. We can now
pick random samples of uncertain parameters in the nominal T and compare it with the Twc.
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Figure 12: T (nominal, blue) vs Twc (worst case, red)

Finally, we can examine the worst-case frequency response using wcsigma.

Figure 13: Worst-case frequency response
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