ESE 680-004: Learning and Control Fall 2019

Lecture 4: Finite-data guarantees and data-dependent bounds
Lecturer: Nikolai Matni Scribes: Kuk Jang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Recap

Recall that we were analyzing the scalar dynamical system

Ti41 = ATt + Up + Wy
o — 0
i.i.d. ii.d.
where w; ~N(0,02), uy ~N(0,02), and a, =, u, w € R.

We ran N experiments and then solved for the estimate @ via least-squares

N
4 = arg main Z(xéfl_l - a;pgf) — u:z:gf))z
i=1
N G) (i
| Sy 2wl
N i
Ei:l(mg“))z
=a+ ey

=a+

To analyze ey, where,

_ | ZZ\L1 mg)w(Ti”

len] -
SN ()2

We divide the problem into two problems:
1. Find a high probability upper bound on numerator
2. Find a high probability lower bound on denominator
. N 1
2 Lower bound on denominator,)", (96<T))2

1=
Deriving the bounds requires us to assume that we utilize only the last two data-points from each trial in
order to simplify the analysis.

How to utilize all the data (the single trajectory case) and derive high probability bounds is presented in a
subsequent lecture.

Lecture 4: Finite-data guarantees and data-dependent bounds 2

Proposition 1. Fiz a failure probability § € (0,1], and let N > 32 log(%), Then with probability at least
1 -9, we have that

N

i N
> @) =t (2)
=1

2

where, 02 == (02 + 02) + ZtT=_o1 a*

Proof.

From previous examples, we know that for X ~ A(0,1), X? is sub-exponential with parameters (4,4). We
saw that if X; and X5 are sub-exponential with parameters (VZ-Q, @;)i=1,2, then X; + Xy is sub-exponential
with parameters (v? + 3, max ay, a2).

We let 02 = Ez2 (the variance of our state). Since X7 is Gaussian, dividing by it’s standard deviation yields
a standard normal distribution, JZ ~ N(O,1).
(27.))

2
From this, we know that i—;ﬁ is sub-exponential(4,4) with mean 1 and) i]\il L~ is sub-exponential (4N,4)
T x

with mean N.

2 22
We apply PLX — EX > 1] < exp (55) if 0 < ¢ < v3/a to YL, 5)

to N.

and derive the bounds with respect

P [Z x¥)2 — Nai < —t}

(1)\2
2 (z1)
e[-] <
=P L%))z N< < — Vt < No2
= Z -2 — _U—g < exp 8Nod t < No,

x

We invert this expression by setting 6 = RH S, and solving for ¢

t = 02/8Nlog(1/6) < No? (assumed N > 32log(1/9))
So we’ve shown that:
N2
Z (a:?) > No2 —0,/8N log(1/6)
~_~ @ Y—
E> T%, error term
Since
N
N > 32log(1/4) > 03,5
]
Comments: Why is (’j—; ~ N(0,1)? Nice things happen when linear systems are driven by Gaussian
noise.
1. If, 2y = axy + ug + wy, ©o = 0, w, ~N(0,02), up ~N(0,02),
we first compute the first moment,

X, = AXy + Bug + wg = Bug + wg

Lecture 4: Finite-data guarantees and data-dependent bounds 3

2. We compute the second moment o2 = E[X?] using induction.

Xr=aXp_1+ur_1+wr_1

Xr_1=aXr_ o +ur—o +wr_2

X1 :LLXO+U1 —+ wq
1

T—1
T t—1
Xr=a 9+ E a'(up—t + wr—y)
t=0

Expanding terms and using linearity of expectation we obtain,

T-1 T-1
E[X7] = E[(Z a' N ur_y +wr_y)) - (Z a' " Mur—y + wr_y))]
t=0 t=0
. Since wy ~N(0,02), ug ~N(0,02),

if ¢
E[wyw,] = ;) sl
1 ift=r7
Eluzw;] =0 Vi, T
Therefore,
T—1
E[X7] =) ' ?(E[uf] + Elw]])
=R

3 Upper bound on numerator, \sz\il x&f)wg)\

In order to find the upper bound we first state the following proposition;
Proposition 2. Fiz a failure probability § € (0,1], and let N > 2log(3). Then with probability at least 1 -4,
we have that

N
IS ePwi || < 20,0,1/Nlog(2/5) (3)
i=1

where, 02 = (02, + 02) + Zz:ol a*

Before we go into the proof, observe the following:

e In the previous section, we showed that the denominator 2~ N. From the proposition, the numerator
= V' N. Therefore, ey = ﬁ

e This relates to a tradeoff between how many trials vs. how long I can run each trial.

Proof. (sketch) From previous examples, we know that for X, Wi'ri\JdN(O, 1), XW is sub-exponential with
parameters (2,v/2). We saw that if X; and X, are sub-exponential with parameters (Y2, i)i=12, then
X1 + X is sub-exponential with parameters (v? + v2, max ay, a2).

Letting 02 = E22,, 2 and “Z''A(O,1).

or or

Lecture 4: Finite-data guarantees and data-dependent bounds 4

; , . () ON .
From this, we know that ﬁ—;qj—; is sub-exponential(2, v/2) and Zfil % is sub-exponential (2NN, v/2)
with mean N.

We apply P[X —EX >] <exp(() ;7752) if0<t<v?/atoN @ D@D Giar to before.

i=1 OxOuw

From Proposition 1 and Proposition 2, we obtain the following theorem:
Theorem 3.1. Fiz a failure probability § € (0,1] and let N > 32log(2). Then with probability 1 — 6,

i aw”| _ow [log(2/0)

len| = . <
SN P2 T eV N

Proof. The proof is based on the choice of N where we can show that the numerator is big with probability
< §/2 and that the denominator is small with probability < ¢/2, then union bound.]

4 Full state system ID with IID trials

4.1 Overview

Let us now examine the full state linear time invariant system:

Ti41 = Axt + But —+ wy

with w; i'UJ\/(O, o2 1,), x € R", control input u; € RP, disturbance w € R™

Our goal is to identify the unknown (A, B). To do this, we run N experiments over a horizon of T + 1 steps,
injecting random inputs u; ~"A(0, 021,) to generate the set {x(i)o.741,uld)o.rr1 Y.

We solve the OLS: (A, B) = arg min 4 g) va:lﬂngll — Ang) . Bu¥)||. Notice, we are only summing the
last two data points so that the terms in the sum are i.i.d.

We wish to characterize the convergence rate properties of the estimates: (A, B) — (A, B).

4.2 Notation

In order to simplify the arguments following, we first define some notation:

Let
1 1 1 1
(afh)" (@) ())T (wily)"
Xy = ,ZN = 7WN = :
N N N N
(x(TJr)1)—r (x(T+)1)T7 (U(T+)1)T (w(TJr)1)T
Then we can rewrite
[A B] =arg (rjlig) ZHLL‘%EA - Ang) - Bu(Tl)H
=1

= in|| Xy —Zn[A B]T|J?
arg(rﬁlg)ﬂ N — Zn]| 1'%

=[A B]" +(Z§Zn)" ZiWN

Lecture 4: Finite-data guarantees and data-dependent bounds 5

where,

i=1
N O] [.0O]"
T _ L L
Z%Zn =) Lﬁ)] L‘(i)]
i=1 T T

Notice that Z3 Zn acts as the denominator and Zy Wy acts as the numerator.

From this, we can define the error in (A, B), i.e., spectral norm bounds, as

=
b
[
/_:I;>
I
b

)T = [Inm Onzxnu] (Z]—l\;ZN)_lzj—\r’WN
Ep = (B - B)T = [Onmxnu Inu} (ZJW\—IZN)AZ;WN

4.3 Error bounds for E4 and Ejp

We will focus on F4. Similar arguments hold for Ep.
We know that w; ~'A(0,021,,).
_ T
FOI', [ng) ugf)} s
Through an inductive argument, we can derive that

T

Xr = ZAt_l(BuT—t—l + wp_4—1)
t=1
By the linearity of expectation
EXr=0
similarly,
T T
]EXTXQT — Z At—lBBT(At—l)To_i + Z At—l(At—l)Taz)
t=1 t=1
Therefore,
ng:) s (o UﬁAc(A,B,T) —‘rJz)Ac(A,I,T) 0
ugf) ’ 0 oll,,

where, Ac(A, B,T) = E?:o A'BBT(AT)! is the T-step controllability Grammian. Note that the singular
values of the grammian relates to how easy the system is to identify.

Now we derive the bounds on ||A — Al|2, Define Q4 = [I,,, On, xn,], then

Lecture 4: Finite-data guarantees and data-dependent bounds 6

|A = Al = 1Qa(Z% Zn) " ZA W ||
= [Qa(Z/PYNZ)/%) T2y Wi
= QS 2 (Yy Ya) T Yy W
=I[=,2 0)(Yy Yn) 'Yy Wa

x

(via the sub-multiplicative property of the spectral norm)

Yy W
Amin (Y YN)

_ YN Wl ~1/2
< |V AN

(8,

where Yy = [y |¥,, with y; ~'N(0, I, +n.)

In a similar manner, it can be shown that

Y Ou)\mzn(Y];{rYN)

5 Proof Strategy

In order to derive the bounds, similar to the scalar case:
e TFirst, find high probability upper bound on ||Yy Wy||2
Next, find high probability lower bound on Apin (Y Yi)

Union bound to combine the two bounds, similar to before.

Need only one other trick to use scalar random variable concentration bounds to control the singular
values of random matrices

Start with upper bound

e Use the variational form of operator norm, pointwise bound, plus a covering argument

6 Upper bound on ||V Wyls

First, we state the result,
Proposition 3. Let z; € R"® and w; € R™ be such that z; ',@LN(sz) and w; ’;i;d'N((),Zw)7 and let
M = Zi\; zw; . Fizing a failure probability 6 € (0,1] and let N > i(n + m)log(9/8). Then, with

probability at least 1 — 9

IM] < 4)[Sa |2 (| Z0[I?V/N (n + m) log(9/6)

Note how the bound depends on n + m, meaning it depends on the size of the system.

Proof. Define

M =3V2(2N v, zhsl/? where Y; ~ N(0,1,,), Z; ~ N(0, I,,)

= w

1M < 1= 2 IS 21152, Yz

Lecture 4: Finite-data guarantees and data-dependent bounds 7

Here,

N
=1V Z o = sup Y (u"yi) (2 v) where [|uf| = [vl| =1, w € R", v € R™
i=1

It’s at this point that we approximate the supremum with an e-net.
Definition 1 (e-net). (HDP, Ch. 4.2) Let (T,d) be a metric space. Consider a subset K C T and let € > 0.
A subset N C K is called an e-net of K if every point in K is within distance € of some point N, i.e.

Vo € K3z € N @ d(z,x0) <e
Equivalently, A is an e-net of K if and only if K can be covered by balls with centers in N and radii e.
Definition 2 (Covering numbers). The smallest possible cardinality of an e-net of K is called the covering

number of K and is denoted N'(K,d,€). Equivalently, N(K,d,¢) is the smallest number of closed balls with
centers in K and radii € whose union covers K.

Using the e-net trick which grids up the space,
Let {ug}h<,, {vr}2X, be such that,

Viull = 1, [|u —ux]| <€ for some uy,

Vil = 1, lv — v < € for some vy,
In other words they are the e-coverings of the S”~! and S™~!, respectively. Then,
u' Mv = (u—u) YMv+ul M(v—uv)+ul My
< lu =i | [M ol] + luw I M|[[[v = vill +ug Moy
= 2¢|| M| + Hllfixungl
Taking the supremum,

|M]) < 26 M| + max u] Moy

[M]| <

1
T
max u;, Muv;
1—2¢ ki F

If we set € = 1/4 and do a standard volume comparison, then we can show that
N <9™
M, <9"
So the total number of pairs (uy,vy) < 9" Substituting back in, we get
N
IS Yzl <2 max (wy i) (21 v1)

1<kE<9n,1<I<9™m 4
i=1

N
1=, Yizh)le <2 (wiyi) (= w) VU (g, vy) pairs
i=1

Applying the sum of sub-exponential r.v.s concentration bounds with probability of failure 9,1%. Then with

probability 1 — ﬁ
- T 9n+m 1
Z(uk yi)(z, vi) < 24/ N log(5) <2¢/N(n+m)log 5

Union bound over all 9™ such events to get the result. Additional details can be found in [1] =

Lecture 4: Finite-data guarantees and data-dependent bounds 8

7 Lower bound on \,;,(Yy Yy)

Using a similar approach, we obtain the lower bound.
Proposition 4. Let z; € R™ be drawn i.i.d. from N'(0,%,), and set M = Eiil z;z) . Fiz a failure probability
d € (0,1] and let N > 24nlog(9/6). Then with probability at least 1 — 20,

Proof. The proof utilizes the previous results and an additional covering argument. Refer to [1] m

8 Putting it all together

With Proposition 3 and Proposition 4, we union bound over all of the relevant failure probabilities.
Theorem 8.1. Fix a failure probability 6 € (0,1] and assume that N > 24(n, +ny,) log(54/8). Then it holds
that with probability at least 1 — ¢,

2ng + ny,) log(54/6)
N

. 1 4
Ou N

A= Al < 80w)_1/2(2m)\/(

min

Note, different bounds with better constants can be found in [2].

9 Data dependent bounds

The previous results rely on properties of the true underlying system and therefore cannot be used to imple-
mented in practice. Therefore, two data-dependent approaches are used to compute error estimates.
Proposition 9.1. Assuming we have N idependent samples (y(l),x(l), u(l)) such that

y® = 420 4+ Bu® 4 Oy,

where w®) N(0,021,.) and are independent from V) and uV. Assume that N > n, + n,, Then with
probability 1 — &, we have

- . -1
(A _ A)T (A _ A)T T e i M7 T2 T
(B—B)T| [(B-B)T| — “nemud 2 w1 |a®
, where G 5 = 02 (/N + o + /M + /210g(1/6))?. If the right hand side has zero as an eigenvalue,
we define the inverse of that eigenvalue to be infinity.

The proof can be found in [2].

We can obtain better bounds by utilizing the bootstrap technique [3]. Lecture notes regarding bootstrap
can be found in [4]. The algorithm can be found in [1].

Lecture 4: Finite-data guarantees and data-dependent bounds 9

Error estimates vs Real estimate for A Error estil vs Real estimate for B
T T T T T T T T T

T T T T T T T T T
3 —
— Initial Bound l — Initial Bound

l Boatstiap Bound 035 Bootstiap Bound |

— —_—

0 20 40 80 80 100 120 140 160 180 200 0 20 40 80 80 100 120 140 160 180 200

(a) Estimates for A. Includes actual error and the data-(b) Estimates for B. Includes actual error and the data-
dependent bounds, as well as the bootstrap error estimatesdependent bounds, as well as the bootstrap error estimates

Figure 1: Results of numerical example.

10 Numerical example

In order to demonstrate the previous results, we apply these methods to estimating the parameters in a
planar model for a quadrotor.

More complicated formulations of the dynamics of a quadrotor are possible, but we linearize the dynam-
ics around the hover state for a quadrotor. The resulting state-space model can be expressed as follows
(Assuming full observability):

Xkp+1 = Ax;, + Buy,

where,
x 100 01 0 O 0.049 0 0
Y . 01 0 0 01 0 0 0.049 0
<= |#] u= ol A = 001 0 0 01 B, — 0 0 0.01
x|’ ¢ 0 0 0 1 0 1 0.98 0 0
U 0 00 O 1 1 0 —-098 0
Z 000 0 O 1 0 0 0.2

We set the parameters, gravity g = 9.8m/s?, the mass of the quadrotor m = 0.5kg, the inputs are bounded
with roll r, pitch p < 45 degrees, and thrust ¢ < 5. The matrices shown are after discretization.

For the experiment, o,, = 0.1, 0y, = 0y, = 0.7854/3, 0, = 5/3.
The results are shown in Fig. 1a and 1b.

As can be seen from the figure, the data-dependent bounds estimate the overall error across the number of
rollouts and improves as the number of rollouts increases. The bootstrap bound also shows improvement
(Actually did not work).

References

[1] Nikolai Matni and Stephen Tu. A Tutorial on Concentration Bounds for System Identification.
arXiv:1906.11395 [cs, math, stat], August 2019. arXiv: 1906.11395.

Lecture 4: Finite-data guarantees and data-dependent bounds 10

[2] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the Sample Complexity
of the Linear Quadratic Regulator. arXiv:1710.01688 [cs, math, stat], October 2017. arXiv: 1710.01688.

[3] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1-26,
January 1979.

[4] Lecturel3.pdf.

The (very naive and inefficient) code used to derive the results are shown here:
The code for this problem is as follows:

clear;

clc;

close all;

%Get discretized dynamics
PlantModelQuadSimpleLinear;

rpmax = deg2rad(45); %Smax roll pitch angle
thrmax = 5x1; %Smax thrust

%$Collect N trials (rollouts), horizon T, find A_hat, B_hat

N = 200;

T = 50;

x0= zeros(6,1);
initial_data.xt = [];
initial_data-xt_.1 = [];
std-u-rp = rpmax/3;
std_u_t = thrmax/3;
sigma.w = 0.1;

fail_ prob = 0.01;

big.A = [sys.d.A zeros(6,3);zeros(6,6) sys.d.B];
E_A = zeros(N,1);
E_.B = zeros(N,1);

bound_A_init = zeros(N,1);
bound_B_init = zeros(N,1);
bootstrap-eA = zeros(N,1);
bootstrap-eB = zeros(N,1);
for n.ind = 1:N
temp_x = zeros(T,9);
temp.y = zeros(T,6);
u0 = [std_u_rpxrandn(2,1); std-u_-t*randn(l,1)];
z0= [x0 ; u0];
x_t = x0;
u_t = u0;
z_t = z0;
for t_ind = 1:T
x_-t.1 = sys-d.Axx_t +sys_-d.Bxu_-t + sigma-wxrandn(6,1);
temp.y (t-ind, :) = x_t_1"';
temp-x (t-ind, :) = [x_t;u-t]"';
u-t = [std-u-rp*randn(2,1); std-u-t*randn(l,1)];
x_.t = x_t_1;

end
initial_data.xt = [initial_data_xt; temp_x];
initial_data-xt_1 = [initial_data-xt_.1l; temp.y];

beta = mvregress(initial_data-xt,initial_data-xt_-1);

Lecture 4: Finite-data guarantees and data-dependent bounds

A_hat beta(l:6, :)';
B_hat = beta(7:9, :)';

%$Compute initial error
E_A(n-ind) = norm(A_-hat - sys-d.A);
E_B(n_-ind) = norm(B_hat - sys.d.B);

$Compute intial bounds
C_squared = sigma.w 2+ (sqrt(9)+ sqgrt(6)+ sqgrt(2+xlog(l/fail_prob))) " 2;

error= [(A_hat - sys.d.A)'; (B_.hat - sys.d.B)'];
error_norm = error*error';

M_mat = inv(initial_data_xt' = initial_data_xt);
error_bound.matrix = C_squared+M._mat;

%$Compute bound for A, B

QA = [eye(6) zeros(6,3)];

QB = [zeros(3,6) eye(3)];

bound_A_init (n_ind) = sqgrt (C_squared) *sqgrt (norm (QA~M_mat+QA"'));
bound_B_.init (n-ind) = sqgrt (C_.squared) *sqgrt (norm(QB*M_mat+QB')) ;
fprintf ('Rollout %d\n', n_ind)

fprintf ('Initial E_A: %g\n', E_A(n_ind))

fprintf('Initial Bound: %g\n ', bound_A_init (n_-ind))

fprintf ('Initial E_B: %g\n', E_B(n_ind))

fprintf('Initial Bound: %g\n', bound.-B_init (n_ind))

%$Boostrap estimation of E_A and E_.B, M times

M= 100;
L = 50;
bootstrap-data-xt = [];
bootstrap-data-xt_-1 = [];
bootstrap-eA_set = zeros|(
bootstrap-eB.set = zeros(
for m.ind = 1:M
for 1l.ind = 1:L
temp-x = zeros(T,9);
temp.y = zeros(T,6);
u0 = [std-u-rp*randn(2,1); std-u-t*randn(l,1)];
z0= [x0 ; u0];
x_t = x0;
u-t = u0;
z_.t = z0;
for t_ind = 1:T
x_t_.1 = A_hatxx_t +B_hat*u.t + sigma_wxrandn(6,1);

M,1);
M,1);

temp.y (t-ind, :) = x_t_1"';
temp_x (t_ind, :) = [x_t;u-t]';
u-t = [std-u-rpx*randn(2,1); std-u-t*randn(l,1)];
x_.t = x_t_1;
end
bootstrap-data_xt = [bootstrap.data-xt; temp_-x];
bootstrap-data-xt_.1 = [bootstrap-data-xt_-1; temp-y];
end

$Find A_tilde, B_tilde

beta = mvregress (bootstrap-data-xt,bootstrap-data-xt_-1);

A_tilde = beta(l:6, :)';
B_.tilde = beta(7:9, :)';
bootstrap-eA_set (m_.ind) = norm(A_.tilde - A_hat);

bootstrap-eB_set (m-ind) = norm(B-tilde - B_hat);

Lecture 4: Finite-data guarantees and data-dependent bounds 12

end

$output 100 (l-delta) percentile
bootstrap._eA(n_ind) = quantile (bootstrap.-eA_set, 1l-fail_prob);
bootstrap-eB(n_-ind) quantile (bootstrap-eB.set, l-fail_prob);

fprintf ('Bootstrap E_A: %g\n', bootstrap-eA(n_-ind))
fprintf ('Bootstrap E_B: %g\n ', bootstrap-eB(n-ind))

end
save ('results.mat')

figure; plot (E_A); hold on; plot(bound.-A_init); plot (bootstrap-ed);
legend ({'E_A'; 'Initial Bound'; 'Bootstrap Bound'})

title('Error estimates vs iterations for A')

saveas (gcf, 'E_Aplot2.png')

figure; plot (E_B); hold on; plot (bound-B_.init); plot (bootstrap-eB);
legend ({'E_B'; 'Initial Bound'; 'Bootstrap Bound'})

title('Error estimates vs iterations for B')

saveas (gcf, 'E.B.plot2.png')

