
ESE 680-004: Learning and Control Fall 2019

Lecture 4: Finite-data guarantees and data-dependent bounds
Lecturer: Nikolai Matni Scribes: Kuk Jang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Recap

Recall that we were analyzing the scalar dynamical system

xt+1 = axt + ut + wt

x0 = 0

where wt
i.i.d.∼ N (0, σ2

w), ut
i.i.d.∼ N (0, σ2

u), and a, x, u, w ∈ R.

We ran N experiments and then solved for the estimate â via least-squares

â = arg min
a

N∑
i=1

(x
(i)
T+1 − ax

(i)
T − ux

(i)
T)2

= a+
|
∑N
i=1 x

(i)
T w

(i)
T |∑N

i=1(x
(i)
T)2

:= a+ eN

To analyze eN , where,

|eN | =
|
∑N
i=1 x

(i)
T w

(i)
T |∑N

i=1(x
(i)
T)2

(1)

We divide the problem into two problems:

1. Find a high probability upper bound on numerator

2. Find a high probability lower bound on denominator

2 Lower bound on denominator,
∑N

i=1(x
(i)
T)2

Deriving the bounds requires us to assume that we utilize only the last two data-points from each trial in
order to simplify the analysis.

How to utilize all the data (the single trajectory case) and derive high probability bounds is presented in a
subsequent lecture.

1

Lecture 4: Finite-data guarantees and data-dependent bounds 2

Proposition 1. Fix a failure probability δ ∈ (0, 1], and let N ≥ 32 log(1
δ). Then with probability at least

1− δ, we have that

N∑
i=1

(x
(i)
T)2 ≥ σ2

x

N

2
(2)

where, σ2
x := (σ2

w + σ2
u) +

∑T−1
t=0 a2t

Proof.

From previous examples, we know that for X ∼ N (0, 1), X2 is sub-exponential with parameters (4,4). We
saw that if X1 and X2 are sub-exponential with parameters (ν2i , αi)i=1,2, then X1 + X2 is sub-exponential
with parameters (ν21 + ν22 ,maxα1, α2).

We let σ2
x = Ex2T (the variance of our state). Since XT is Gaussian, dividing by it’s standard deviation yields

a standard normal distribution, xT
σT
∼ N (O, 1).

From this, we know that
x2
T

σ2
T

is sub-exponential(4,4) with mean 1 and
∑N
i=1

(x2
T)

(i)
σ2
x

is sub-exponential (4N,4)

with mean N.

We apply P[X − EX ≥ t] ≤ exp
(
−t2
2ν2

)
if 0 ≤ t ≤ ν2/α to

∑N
i=1

(x2
T)

(i)

σ2
x

and derive the bounds with respect

to N .

P
[∑

x
(i)2

T −Nσ2
x ≤ −t

]
= P

[
σ2
x

[∑ (x
(i)
T)2

σ2
x

−N

]
≤ t

]

= P

[∑ (x
(i)
T)2

σ2
x

−N ≤ −t
σ2
x

]
≤ exp

(
−t

8Nσ4
x

)
∀t ≤ Nσ2

x

We invert this expression by setting δ = RHS, and solving for t

t = σ2
x

√
8N log(1/δ) ≤ Nσ2

x (assumed N ≥ 32 log(1/δ))

So we’ve shown that: ∑(
x
(i)
T

)2
≥ Nσ2

x︸︷︷︸
E
∑
x2
T

−σx
√

8N log(1/δ)︸ ︷︷ ︸
error term

Since

N ≥ 32 log(1/δ) ≥ σ2
x

N

2

Comments: Why is xT
σT
∼ N (O, 1)? Nice things happen when linear systems are driven by Gaussian

noise.

1. If, xt+1 = axt + ut + wt, x0 = 0, wt
i.i.d.∼ N (0, σ2

w), ut
i.i.d.∼ N (0, σ2

u),

we first compute the first moment,

X1 = AX0 +Bu0 + w0 = Bu0 + w0

E[X1] = E(Bu0 + w0) = BE[u0] + E[w0] = 0

Lecture 4: Finite-data guarantees and data-dependent bounds 3

2. We compute the second moment σ2
x = E[X2

T] using induction.

XT = aXT−1 + uT−1 + wT−1

XT−1 = aXT−2 + uT−2 + wT−2

...

X1 = aX0 + u1 + w1

↓

XT = aTx0 +

T−1∑
t=0

at−1(uT−t + wT−t)

Expanding terms and using linearity of expectation we obtain,

E[X2
T] = E[(

T−1∑
t=0

at−1(uT−t + wT−t)) · (
T−1∑
t=0

at−1(uT−t + wT−t))]

. Since wt
i.i.d.∼ N (0, σ2

w), ut
i.i.d.∼ N (0, σ2

u),

E[wtwτ] =

{
0 if t 6= τ

1 if t = τ

E[utwτ] = 0 ∀t, τ

Therefore,

E[X2
T] =

T−1∑
t=0

at−2(E[u2t]︸ ︷︷ ︸
σ2
u

+E[w2
t]︸ ︷︷ ︸

σ2
w

)

3 Upper bound on numerator, |
∑N

i=1 x
(i)
T w

(i)
T |

In order to find the upper bound we first state the following proposition;
Proposition 2. Fix a failure probability δ ∈ (0, 1], and let N ≥ 2 log(1

δ). Then with probability at least 1−δ,
we have that

‖
N∑
i=1

x
(i)
T w

(i)
T ‖ ≤ 2σxσw

√
N log(2/δ) (3)

where, σ2
x := (σ2

w + σ2
u) +

∑T−1
t=0 a2t

Before we go into the proof, observe the following:

• In the previous section, we showed that the denominator % N . From the proposition, the numerator
-
√
N . Therefore, eN - 1√

N
.

• This relates to a tradeoff between how many trials vs. how long I can run each trial.

Proof. (sketch) From previous examples, we know that for X,W
i.i.d.∼ N (0, 1), XW is sub-exponential with

parameters (2,
√

2). We saw that if X1 and X2 are sub-exponential with parameters (ν2i , αi)i=1,2, then
X1 +X2 is sub-exponential with parameters (ν21 + ν22 ,maxα1, α2).

Letting σ2
x = Ex2T , xT

σT
and wT

σT

i.i.d.∼ N (O, 1).

Lecture 4: Finite-data guarantees and data-dependent bounds 4

From this, we know that xT
σT

wT
σT

is sub-exponential(2,
√

2) and
∑N
i=1

(xT)
(i)(wT)

(i)

σxσw
is sub-exponential (2N,

√
2)

with mean N.

We apply P[X − EX ≥ t] ≤ exp (() −t
2

2ν2) if 0 ≤ t ≤ ν2/α to
∑N
i=1

(xT)
(i)(wT)

(i)
σxσw

similar to before.

From Proposition 1 and Proposition 2, we obtain the following theorem:
Theorem 3.1. Fix a failure probability δ ∈ (0, 1] and let N ≥ 32 log(2

δ). Then with probability 1− δ,

|eN | =
|
∑N
i=1 x

(i)
t w

(i)
t |∑N

i=1(x
(i)
T)2

≤ 4
σw
σx

√
log(2/δ)

N

Proof. The proof is based on the choice of N where we can show that the numerator is big with probability
≤ δ/2 and that the denominator is small with probability ≤ δ/2, then union bound.

4 Full state system ID with IID trials

4.1 Overview

Let us now examine the full state linear time invariant system:

xt+1 = Axt +But + wt

with wt
i.i.d.∼ N (0, σ2

wIn), x ∈ Rn, control input ut ∈ Rp, disturbance w ∈ Rn

Our goal is to identify the unknown (A,B). To do this, we run N experiments over a horizon of T + 1 steps,

injecting random inputs ut
i.i.d.∼ N (0, σ2

uIp) to generate the set {x(i)0:T+1, u
(i)0:T+1}Ni=1.

We solve the OLS: (Â, B̂) = arg min(A,B)

∑N
i=1‖x

(i)
T+1 − Ax

(i)
T − Bu

(i)
T ‖. Notice, we are only summing the

last two data points so that the terms in the sum are i.i.d.

We wish to characterize the convergence rate properties of the estimates: (Â, B̂)→ (A,B).

4.2 Notation

In order to simplify the arguments following, we first define some notation:

Let

XN :=

(x

(1)
T+1)>

...

(x
(N)
T+1)>

 , ZN :=

(x

(1)
T+1)>, (u

(1)
T+1)>

...

(x
(N)
T+1)>, (u

(N)
T+1)>

 ,WN :=

(w

(1)
T+1)>

...

(w
(N)
T+1)>

Then we can rewrite [

Â B̂
]>

= arg min
(A,B)

N∑
i=1

‖x(i)T+1 −Ax
(i)
T −Bu

(i)
T ‖

= arg min
(A,B)

‖XN − ZN [A B]>‖2F

= [A B]> + (Z>NZN)−1Z>NWN

Lecture 4: Finite-data guarantees and data-dependent bounds 5

where,

Z>NWN =

N∑
i=1

[
x
(i)
T

u
(i)
T

]
(w

(i)
T)>

Z>NZN =

N∑
i=1

[
x
(i)
T

u
(i)
T

][
x
(i)
T

u
(i)
T

]>

Notice that Z>NZN acts as the denominator and Z>NWN acts as the numerator.

From this, we can define the error in (A,B), i.e., spectral norm bounds, as

EA := (Â−A)> =
[
Inx 0nx×nu

]
(Z>NZN)−1Z>NWN

EB := (B̂ −B)> =
[
0nx×nu Inu

]
(Z>NZN)−1Z>NWN

.

4.3 Error bounds for EA and EB

We will focus on EA. Similar arguments hold for EB .

We know that wt
i.i.d.∼ N (0, σ2

wIn).

For,
[
x
(i)
T u

(i)
T

]>
,

Through an inductive argument, we can derive that

XT =

T∑
t=1

At−1(BuT−t−1 + wT−t−1)

By the linearity of expectation

EXT = 0

similarly,

EXTX
>
T =

T∑
t=1

At−1BB>(At−1)>σ2
u +

T∑
t=1

At−1(At−1)>σ2
w

Therefore, [
x
(i)
T

u
(i)
T

]
i.i.d.∼ N

(
0,

[
σ2
uΛC(A,B, T) + σ2

wΛC(A, I, T) 0
0 σ2

uInu

])

where, ΛC(A,B, T) =
∑T
t=0A

tBB>(A>)t is the T -step controllability Grammian. Note that the singular
values of the grammian relates to how easy the system is to identify.

Now we derive the bounds on ‖Â−A‖2, Define QA = [Inx 0nx×nu], then

Lecture 4: Finite-data guarantees and data-dependent bounds 6

‖Â−A‖ = ‖QA(Z>NZN)−1Z>NWN‖
= ‖QA(Σ1/2

x Y >N Σ1/2
x)−1Σ1/2

x Y >NWN‖
= ‖QAΣ−1/2x (Y >N YN)−1Y >NWN‖
= ‖[Σ−1/2x 0](Y >N YN)−1Y >NWN‖

(via the sub-multiplicative property of the spectral norm)

≤ ‖Σ−1/2x ‖ ‖Y
>
NWN‖

λmin(Y >N YN)
= λ

−1/2
min (Σx)

‖Y >NWN‖
λmin(Y >N YN)

where YN := [y>i]Ni=1, with yi
i.i.d.∼ N (0, Inx+nu)

In a similar manner, it can be shown that

‖B̂ −B‖w ≤
1

σu

‖Y >NWN‖2
λmin(Y >N YN)

5 Proof Strategy

In order to derive the bounds, similar to the scalar case:

• First, find high probability upper bound on ‖Y >NWN‖2
• Next, find high probability lower bound on λmin(Y >N YN)

• Union bound to combine the two bounds, similar to before.

• Need only one other trick to use scalar random variable concentration bounds to control the singular
values of random matrices

• Start with upper bound

• Use the variational form of operator norm, pointwise bound, plus a covering argument

6 Upper bound on ‖Y >NWN‖2

First, we state the result,

Proposition 3. Let xi ∈ Rn and wi ∈ Rm be such that xi
i.i.d.∼ N (0,Σx) and wi

i.i.d.∼ N(0,Σw), and let

M =
∑N
i=1 xiw

>
i . Fixing a failure probability δ ∈ (0, 1] and let N ≥ 1

2 (n + m) log(9/δ). Then, with
probability at least 1− δ

‖M‖ ≤ 4‖Σx‖1/2‖Σw‖1/2
√
N(n+m) log(9/δ)

Note how the bound depends on n+m, meaning it depends on the size of the system.

Proof. Define

M = Σ1/2
x (ΣNi=1YiZ

T
i)Σ1/2

w where Yi ∼ N(0, In), Zi ∼ N(0, Im)

‖M‖ ≤ ‖Σ1/2
x ‖‖Σ1/2

w ‖‖ΣNi=1YiZ
T
i)‖

Lecture 4: Finite-data guarantees and data-dependent bounds 7

Here,

‖ΣNi=1YiZ
T
i)‖2 = sup

N∑
i=1

(u>yi)(z
>
i v) where ‖u‖ = ‖v‖ = 1, u ∈ Rn, v ∈ Rm

It’s at this point that we approximate the supremum with an ε-net.
Definition 1 (ε-net). (HDP, Ch. 4.2) Let (T, d) be a metric space. Consider a subset K ⊂ T and let ε > 0.
A subset N ⊆ K is called an ε-net of K if every point in K is within distance ε of some point N , i.e.

∀x ∈ K∃x0 ∈ N : d(x, x0) ≤ ε

Equivalently, N is an ε-net of K if and only if K can be covered by balls with centers in N and radii ε.
Definition 2 (Covering numbers). The smallest possible cardinality of an ε-net of K is called the covering
number of K and is denoted N (K, d, ε). Equivalently, N (K, d, ε) is the smallest number of closed balls with
centers in K and radii ε whose union covers K.

Using the ε-net trick which grids up the space,

Let {uk}Nεk=1, {vk}
Mε

k=1 be such that,

∀‖u‖ = 1, ‖u− uk‖ ≤ ε for some uk

∀‖v‖ = 1, ‖v − vk‖ ≤ ε for some vk

In other words they are the ε-coverings of the Sn−1 and Sm−1, respectively. Then,

u>Mv = (u− u>k)Mv + u>kM(v − vl) + u>kMvl

≤ ‖u− uk‖‖M‖‖v‖+ ‖uk‖‖M‖‖v − vl‖+ u>kMvl

= 2ε‖M‖+ max
k,l

u>kMvl

Taking the supremum,

‖M‖ ≤ 2ε‖M‖+ max
k,l

u>kMvl

‖M‖ ≤ 1

1− 2ε
max
k,l

u>kMvl

If we set ε = 1/4 and do a standard volume comparison, then we can show that

Nε ≤ 9m

Mε ≤ 9n

So the total number of pairs (uk, vk) ≤ 9n+m Substituting back in, we get

‖ΣNi=1YiZ
T
i)‖2 ≤ 2 max

1≤k≤9n,1≤l≤9m

N∑
i=1

(w>k yi)(z
>
i vl)

‖ΣNi=1YiZ
T
i)‖2 ≤ 2

N∑
i=1

(u>k yi)(z
>
i vl) ∀9(m+n) (uk, vl) pairs

Applying the sum of sub-exponential r.v.s concentration bounds with probability of failure δ
9n+m . Then with

probability 1− δ
9n+m ∑

(u>k yi)(z
>
t vl) ≤ 2

√
N log(

9n+m

δ
) ≤ 2

√
N(n+m) log

1

δ

Union bound over all 9n+m such events to get the result. Additional details can be found in [1]

Lecture 4: Finite-data guarantees and data-dependent bounds 8

7 Lower bound on λmin(Y
>
N YN)

Using a similar approach, we obtain the lower bound.
Proposition 4. Let xi ∈ Rn be drawn i.i.d. from N (0,Σx), and set M =

∑N
i=1 xix

>
i . Fix a failure probability

δ ∈ (0, 1] and let N ≥ 24n log(9/δ). Then with probability at least 1− 2δ,

λmin(M) ≥ λmin(Σx)N/2

Proof. The proof utilizes the previous results and an additional covering argument. Refer to [1]

8 Putting it all together

With Proposition 3 and Proposition 4, we union bound over all of the relevant failure probabilities.
Theorem 8.1. Fix a failure probability δ ∈ (0, 1] and assume that N ≥ 24(nx+nu) log(54/δ). Then it holds
that with probability at least 1− δ,

‖Â−A‖2 ≤ 8σwλ
−1/2
min (Σx)

√
(2nx + nu) log(54/δ)

N

‖B̂ −B‖2 ≤ 8
σw
σu

√
(2nx + nu) log(54/δ)

N

Note, different bounds with better constants can be found in [2].

9 Data dependent bounds

The previous results rely on properties of the true underlying system and therefore cannot be used to imple-
mented in practice. Therefore, two data-dependent approaches are used to compute error estimates.
Proposition 9.1. Assuming we have N idependent samples (y(l), x(l), u(l)) such that

y(l) = Ax(l) +Bu(l) + w(l)),

where w(l) i.i.d.∼ N (0, σ2
wInx) and are independent from x(l) and u(l). Assume that N ≥ nx + nu, Then with

probability 1− δ, we have

[
(Â−A)>

(B̂ −B)>

] [
(Â−A)>

(B̂ −B)>

]>
� C2

nx,nu,δ

(
N∑
l=1

[
x(l)

u(l)

] [
x(l)

u(l)

]>)−1

, where C2
nx,nu,δ

= δ2w(
√
nx + nu +

√
nx +

√
2 log(1/δ))2. If the right hand side has zero as an eigenvalue,

we define the inverse of that eigenvalue to be infinity.

The proof can be found in [2].

We can obtain better bounds by utilizing the bootstrap technique [3]. Lecture notes regarding bootstrap
can be found in [4]. The algorithm can be found in [1].

Lecture 4: Finite-data guarantees and data-dependent bounds 9

(a) Estimates for A. Includes actual error and the data-
dependent bounds, as well as the bootstrap error estimates

(b) Estimates for B. Includes actual error and the data-
dependent bounds, as well as the bootstrap error estimates

Figure 1: Results of numerical example.

10 Numerical example

In order to demonstrate the previous results, we apply these methods to estimating the parameters in a
planar model for a quadrotor.

More complicated formulations of the dynamics of a quadrotor are possible, but we linearize the dynam-
ics around the hover state for a quadrotor. The resulting state-space model can be expressed as follows
(Assuming full observability):

xk+1 = Axk +Buk

where,

x =

x
y
z
ẋ
ẏ
ż

 ,u =

rp
t

Ak =

1 0 0 0.1 0 0
0 1 0 0 0.1 0
0 0 1 0 0 0.1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 Bk =

0.049 0 0

0 0.049 0
0 0 0.01

0.98 0 0
0 −0.98 0
0 0 0.2

We set the parameters, gravity g = 9.8m/s2, the mass of the quadrotor m = 0.5kg, the inputs are bounded
with roll r, pitch p ≤ 45 degrees, and thrust t ≤ 5. The matrices shown are after discretization.

For the experiment, σw = 0.1, σu,r = σu,p = 0.7854/3, σu,t = 5/3.

The results are shown in Fig. 1a and 1b.

As can be seen from the figure, the data-dependent bounds estimate the overall error across the number of
rollouts and improves as the number of rollouts increases. The bootstrap bound also shows improvement
(Actually did not work).

References

[1] Nikolai Matni and Stephen Tu. A Tutorial on Concentration Bounds for System Identification.
arXiv:1906.11395 [cs, math, stat], August 2019. arXiv: 1906.11395.

Lecture 4: Finite-data guarantees and data-dependent bounds 10

[2] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the Sample Complexity
of the Linear Quadratic Regulator. arXiv:1710.01688 [cs, math, stat], October 2017. arXiv: 1710.01688.

[3] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1–26,
January 1979.

[4] Lecture13.pdf.

The (very naive and inefficient) code used to derive the results are shown here:
The code for this problem is as follows:

clear;
clc;
close all;
%Get discretized dynamics
PlantModelQuadSimpleLinear;

rpmax = deg2rad(45); %max roll pitch angle
thrmax = 5*1; %max thrust

%Collect N trials (rollouts), horizon T, find A hat, B hat

N = 200;
T = 50;
x0= zeros(6,1);
initial data xt = [];
initial data xt 1 = [];
std u rp = rpmax/3;
std u t = thrmax/3;
sigma w = 0.1;
fail prob = 0.01;

big A = [sys d.A zeros(6,3);zeros(6,6) sys d.B];
E A = zeros(N,1);
E B = zeros(N,1);
bound A init = zeros(N,1);
bound B init = zeros(N,1);
bootstrap eA = zeros(N,1);
bootstrap eB = zeros(N,1);

for n ind = 1:N
temp x = zeros(T,9);
temp y = zeros(T,6);
u0 = [std u rp*randn(2,1); std u t*randn(1,1)];
z0= [x0 ; u0];
x t = x0;
u t = u0;
z t = z0;
for t ind = 1:T

x t 1 = sys d.A*x t +sys d.B*u t + sigma w*randn(6,1);
temp y(t ind, :) = x t 1';
temp x(t ind, :) = [x t;u t]';

u t = [std u rp*randn(2,1); std u t*randn(1,1)];
x t = x t 1;

end
initial data xt = [initial data xt; temp x];
initial data xt 1 = [initial data xt 1; temp y];

beta = mvregress(initial data xt,initial data xt 1);

Lecture 4: Finite-data guarantees and data-dependent bounds 11

A hat = beta(1:6, :)';
B hat = beta(7:9, :)';

%Compute initial error
E A(n ind) = norm(A hat - sys d.A);
E B(n ind) = norm(B hat - sys d.B);

%Compute intial bounds
C squared = sigma wˆ2*(sqrt(9)+ sqrt(6)+ sqrt(2*log(1/fail prob)))ˆ2;
error= [(A hat - sys d.A)'; (B hat - sys d.B)'];
error norm = error*error';
M mat = inv(initial data xt' * initial data xt);
error bound matrix = C squared*M mat;

%Compute bound for A, B
QA = [eye(6) zeros(6,3)];
QB = [zeros(3,6) eye(3)];

bound A init(n ind) = sqrt(C squared)*sqrt(norm(QA*M mat*QA'));
bound B init(n ind) = sqrt(C squared)*sqrt(norm(QB*M mat*QB'));

fprintf('Rollout %d\n',n ind)
fprintf('Initial E A: %g\n', E A(n ind))
fprintf('Initial Bound: %g\n', bound A init(n ind))
fprintf('Initial E B: %g\n', E B(n ind))
fprintf('Initial Bound: %g\n', bound B init(n ind))

%Boostrap estimation of E A and E B, M times

M= 100;
L = 50;
bootstrap data xt = [];
bootstrap data xt 1 = [];
bootstrap eA set = zeros(M,1);
bootstrap eB set = zeros(M,1);
for m ind = 1:M

for l ind = 1:L
temp x = zeros(T,9);
temp y = zeros(T,6);
u0 = [std u rp*randn(2,1); std u t*randn(1,1)];
z0= [x0 ; u0];
x t = x0;
u t = u0;
z t = z0;
for t ind = 1:T

x t 1 = A hat*x t +B hat*u t + sigma w*randn(6,1);
temp y(t ind, :) = x t 1';
temp x(t ind, :) = [x t;u t]';

u t = [std u rp*randn(2,1); std u t*randn(1,1)];
x t = x t 1;

end
bootstrap data xt = [bootstrap data xt; temp x];
bootstrap data xt 1 = [bootstrap data xt 1; temp y];

end

%Find A tilde, B tilde

beta = mvregress(bootstrap data xt,bootstrap data xt 1);
A tilde = beta(1:6, :)';
B tilde = beta(7:9, :)';
bootstrap eA set(m ind) = norm(A tilde - A hat);
bootstrap eB set(m ind) = norm(B tilde - B hat);

Lecture 4: Finite-data guarantees and data-dependent bounds 12

end

%output 100(1-delta) percentile
bootstrap eA(n ind) = quantile(bootstrap eA set, 1-fail prob);
bootstrap eB(n ind) = quantile(bootstrap eB set, 1-fail prob);

fprintf('Bootstrap E A: %g\n', bootstrap eA(n ind))
fprintf('Bootstrap E B: %g\n', bootstrap eB(n ind))

end

save ('results.mat')

figure; plot(E A); hold on; plot(bound A init); plot(bootstrap eA);
legend({'E A'; 'Initial Bound'; 'Bootstrap Bound'})
title('Error estimates vs iterations for A')
saveas(gcf, 'E A plot2.png')

figure; plot(E B); hold on; plot(bound B init); plot(bootstrap eB);
legend({'E B'; 'Initial Bound'; 'Bootstrap Bound'})
title('Error estimates vs iterations for B')
saveas(gcf, 'E B plot2.png')

