Lecture 4: Finite-data guarantees and data-dependent bounds

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Recap

Recall that we were analyzing the scalar dynamical system

$$
\begin{array}{r}
x_{t+1}=a x_{t}+u_{t}+w_{t} \\
x_{0}=0
\end{array}
$$

where $w_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right), u_{t} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(0, \sigma_{u}^{2}\right)$, and $a, x, u, w \in \mathbb{R}$.
We ran N experiments and then solved for the estimate \hat{a} via least-squares

$$
\begin{aligned}
\hat{a} & =\arg \min _{a} \sum_{i=1}^{N}\left(x_{T+1}^{(i)}-a x_{T}^{(i)}-u x_{T}^{(i)}\right)^{2} \\
& =a+\frac{\left|\sum_{i=1}^{N} x_{T}^{(i)} w_{T}^{(i)}\right|}{\sum_{i=1}^{N}\left(x_{T}^{(i)}\right)^{2}} \\
& :=a+e_{N}
\end{aligned}
$$

To analyze e_{N}, where,

$$
\begin{equation*}
\left|e_{N}\right|=\frac{\left|\sum_{i=1}^{N} x_{T}^{(i)} w_{T}^{(i)}\right|}{\sum_{i=1}^{N}\left(x_{T}^{(i)}\right)^{2}} \tag{1}
\end{equation*}
$$

We divide the problem into two problems:

1. Find a high probability upper bound on numerator
2. Find a high probability lower bound on denominator

2 Lower bound on denominator, $\sum_{i=1}^{N}\left(x_{T}^{(i)}\right)^{2}$

Deriving the bounds requires us to assume that we utilize only the last two data-points from each trial in order to simplify the analysis.

How to utilize all the data (the single trajectory case) and derive high probability bounds is presented in a subsequent lecture.

Proposition 1. Fix a failure probability $\delta \in(0,1]$, and let $N \geq 32 \log \left(\frac{1}{\delta}\right)$. Then with probability at least $1-\delta$, we have that

$$
\begin{equation*}
\sum_{i=1}^{N}\left(x_{T}^{(i)}\right)^{2} \geq \sigma_{x}^{2} \frac{N}{2} \tag{2}
\end{equation*}
$$

where, $\sigma_{x}^{2}:=\left(\sigma_{w}^{2}+\sigma_{u}^{2}\right)+\sum_{t=0}^{T-1} a^{2 t}$
Proof.
From previous examples, we know that for $X \sim \mathcal{N}(0,1), X^{2}$ is sub-exponential with parameters $(4,4)$. We saw that if X_{1} and X_{2} are sub-exponential with parameters $\left(\nu_{i}^{2}, \alpha_{i}\right)_{i=1,2}$, then $X_{1}+X_{2}$ is sub-exponential with parameters $\left(\nu_{1}^{2}+\nu_{2}^{2}, \max \alpha_{1}, \alpha 2\right)$.
We let $\sigma_{x}^{2}=\mathbb{E} x_{T}^{2}$ (the variance of our state). Since X_{T} is Gaussian, dividing by it's standard deviation yields a standard normal distribution, $\frac{x_{T}}{\sigma_{T}} \sim \mathcal{N}(O, 1)$.

From this, we know that $\frac{x_{T}^{2}}{\sigma_{T}^{2}}$ is sub-exponential $(4,4)$ with mean 1 and $\sum_{i=1}^{N} \frac{\left(x_{T}^{2}\right)^{(i)}}{\sigma_{x}^{2}}$ is sub-exponential (4N,4) with mean N .
We apply $\mathbb{P}[X-\mathbb{E} X \geq t] \leq \exp \left(\frac{-t^{2}}{2 \nu^{2}}\right)$ if $0 \leq t \leq \nu^{2} / \alpha$ to $\sum_{i=1}^{N} \frac{\left(x_{T}^{2}\right)^{(i)}}{\sigma_{x}^{2}}$ and derive the bounds with respect to N.

$$
\begin{aligned}
\mathbb{P}\left[\sum x_{T}^{(i)^{2}}-N \sigma_{x}^{2} \leq-t\right] & =\mathbb{P}\left[\sigma_{x}^{2}\left[\sum \frac{\left(x_{T}^{(i)}\right)^{2}}{\sigma_{x}^{2}}-N\right] \leq t\right] \\
& =\mathbb{P}\left[\sum \frac{\left(x_{T}^{(i)}\right)^{2}}{\sigma_{x}^{2}}-N \leq \frac{-t}{\sigma_{x}^{2}}\right] \leq \exp \left(\frac{-t}{8 N \sigma_{x}^{4}}\right) \quad \forall t \leq N \sigma_{x}^{2}
\end{aligned}
$$

We invert this expression by setting $\delta=R H S$, and solving for t

$$
t=\sigma_{x}^{2} \sqrt{8 N \log (1 / \delta)} \leq N \sigma_{x}^{2} \quad(\operatorname{assumed} N \geq 32 \log (1 / \delta))
$$

So we've shown that:

$$
\sum\left(x_{T}^{(i)}\right)^{2} \geq \underbrace{N \sigma_{x}^{2}}_{\mathbb{E} \sum x_{T}^{2}}-\underbrace{\sigma_{x} \sqrt{8 N \log (1 / \delta)}}_{\text {error term }}
$$

Since

$$
N \geq 32 \log (1 / \delta) \geq \sigma_{x}^{2} \frac{N}{2}
$$

Comments: Why is $\frac{x_{T}}{\sigma_{T}} \sim \mathcal{N}(O, 1)$? Nice things happen when linear systems are driven by Gaussian noise.

1. If, $x_{t+1}=a x_{t}+u_{t}+w_{t}, x_{0}=0, w_{t} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right), u_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{u}^{2}\right)$,
we first compute the first moment,

$$
\begin{aligned}
X_{1} & =A X_{0}+B u_{0}+w_{0}=B u_{0}+w_{0} \\
\mathbb{E}\left[X_{1}\right] & =\mathbb{E}\left(B u_{0}+w_{0}\right)=B \mathbb{E}\left[u_{0}\right]+E\left[w_{0}\right]=0
\end{aligned}
$$

2. We compute the second moment $\sigma_{x}^{2}=\mathbb{E}\left[X_{T}^{2}\right]$ using induction.

$$
\begin{aligned}
X_{T} & =a X_{T-1}+u_{T-1}+w_{T-1} \\
X_{T-1} & =a X_{T-2}+u_{T-2}+w_{T-2} \\
& \vdots \\
X_{1} & =a X_{0}+u_{1}+w_{1} \\
\downarrow & \\
X_{T} & =a^{T} x_{0}+\sum_{t=0}^{T-1} a^{t-1}\left(u_{T-t}+w_{T-t}\right)
\end{aligned}
$$

Expanding terms and using linearity of expectation we obtain,

$$
\mathbb{E}\left[X_{T}^{2}\right]=\mathbb{E}\left[\left(\sum_{t=0}^{T-1} a^{t-1}\left(u_{T-t}+w_{T-t}\right)\right) \cdot\left(\sum_{t=0}^{T-1} a^{t-1}\left(u_{T-t}+w_{T-t}\right)\right)\right]
$$

. Since $w_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right), u_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{u}^{2}\right)$,

$$
\begin{aligned}
& \mathbb{E}\left[w_{t} w_{\tau}\right]= \begin{cases}0 & \text { if } t \neq \tau \\
1 & \text { if } t=\tau\end{cases} \\
& \mathbb{E}\left[u_{t} w_{\tau}\right]=0 \quad \forall t, \tau
\end{aligned}
$$

Therefore,

$$
\mathbb{E}\left[X_{T}^{2}\right]=\sum_{t=0}^{T-1} a^{t-2}(\underbrace{\mathbb{E}\left[u_{t}^{2}\right]}_{\sigma_{u}^{2}}+\underbrace{\mathbb{E}\left[w_{t}^{2}\right]}_{\sigma_{w}^{2}})
$$

3 Upper bound on numerator, $\left|\sum_{i=1}^{N} x_{T}^{(i)} w_{T}^{(i)}\right|$

In order to find the upper bound we first state the following proposition;
Proposition 2. Fix a failure probability $\delta \in(0,1]$, and let $N \geq 2 \log \left(\frac{1}{\delta}\right)$. Then with probability at least $1-\delta$, we have that

$$
\begin{equation*}
\left\|\sum_{i=1}^{N} x_{T}^{(i)} w_{T}^{(i)}\right\| \leq 2 \sigma_{x} \sigma_{w} \sqrt{N \log (2 / \delta)} \tag{3}
\end{equation*}
$$

where, $\sigma_{x}^{2}:=\left(\sigma_{w}^{2}+\sigma_{u}^{2}\right)+\sum_{t=0}^{T-1} a^{2 t}$
Before we go into the proof, observe the following:

- In the previous section, we showed that the denominator $\succsim N$. From the proposition, the numerator $\precsim \sqrt{N}$. Therefore, $e_{N} \precsim \frac{1}{\sqrt{N}}$.
- This relates to a tradeoff between how many trials vs. how long I can run each trial.

Proof. (sketch) From previous examples, we know that for $X, W \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), X W$ is sub-exponential with parameters $(2, \sqrt{2})$. We saw that if X_{1} and X_{2} are sub-exponential with parameters $\left(\nu_{i}^{2}, \alpha_{i}\right)_{i=1,2}$, then $X_{1}+X_{2}$ is sub-exponential with parameters $\left(\nu_{1}^{2}+\nu_{2}^{2}, \max \alpha_{1}, \alpha 2\right)$.
Letting $\sigma_{x}^{2}=\mathbb{E} x_{T}^{2}, \frac{x_{T}}{\sigma_{T}}$ and $\frac{w_{T}}{\sigma_{T}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(O, 1)$.

From this, we know that $\frac{x_{T}}{\sigma_{T}} \frac{w_{T}}{\sigma_{T}}$ is sub-exponential $(2, \sqrt{2})$ and $\sum_{i=1}^{N} \frac{\left(x_{T}\right)^{(i)}\left(w_{T}\right)^{(i)}}{\sigma_{x} \sigma_{w}}$ is sub-exponential $(2 N, \sqrt{2})$ with mean N .
We apply $\mathbb{P}[X-\mathbb{E} X \geq t] \leq \exp \left(() \frac{-t^{2}}{2 \nu^{2}}\right)$ if $0 \leq t \leq \nu^{2} / \alpha$ to $\sum_{i=1}^{N} \frac{\left(x_{T}\right)^{(i)\left(w_{T}\right)^{(i)}}}{\sigma_{x} \sigma_{w}}$ similar to before.

From Proposition 1 and Proposition 2, we obtain the following theorem:
Theorem 3.1. Fix a failure probability $\delta \in(0,1]$ and let $N \geq 32 \log \left(\frac{2}{\delta}\right)$. Then with probability $1-\delta$,

$$
\left|e_{N}\right|=\frac{\left|\sum_{i=1}^{N} x_{t}^{(i)} w_{t}^{(i)}\right|}{\sum_{i=1}^{N}\left(x_{T}^{(i)}\right)^{2}} \leq 4 \frac{\sigma_{w}}{\sigma_{x}} \sqrt{\frac{\log (2 / \delta)}{N}}
$$

Proof. The proof is based on the choice of N where we can show that the numerator is big with probability $\leq \delta / 2$ and that the denominator is small with probability $\leq \delta / 2$, then union bound.

4 Full state system ID with IID trials

4.1 Overview

Let us now examine the full state linear time invariant system:

$$
x_{t+1}=A x_{t}+B u_{t}+w_{t}
$$

with $w_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2} I_{n}\right), x \in \mathbb{R}^{n}$, control input $u_{t} \in \mathbb{R}^{p}$, disturbance $w \in \mathbb{R}^{n}$
Our goal is to identify the unknown (A, B). To do this, we run N experiments over a horizon of $T+1$ steps, injecting random inputs $u_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{u}^{2} I_{p}\right)$ to generate the set $\left.\left.\left\{x^{(i}\right)_{0: T+1}, u^{(} i\right)_{0: T+1}\right\}_{i=1}^{N}$.
We solve the OLS: $(\hat{A}, \hat{B})=\arg \min _{(A, B)} \sum_{i=1}^{N}\left\|x_{T+1}^{(i)}-A x_{T}^{(i)}-B u_{T}^{(i)}\right\|$. Notice, we are only summing the last two data points so that the terms in the sum are i.i.d.
We wish to characterize the convergence rate properties of the estimates: $(\hat{A}, \hat{B}) \rightarrow(A, B)$.

4.2 Notation

In order to simplify the arguments following, we first define some notation:
Let

$$
X_{N}:=\left[\begin{array}{c}
\left(x_{T+1}^{(1)}\right)^{\top} \\
\vdots \\
\left(x_{T+1}^{(N)}\right)^{\top}
\end{array}\right], Z_{N}:=\left[\begin{array}{c}
\left(x_{T+1}^{(1)}\right)^{\top},\left(u_{T+1}^{(1)}\right)^{\top} \\
\vdots \\
\left(x_{T+1}^{(N)}\right)^{\top},\left(u_{T+1}^{(N)}\right)^{\top}
\end{array}\right], W_{N}:=\left[\begin{array}{c}
\left(w_{T+1}^{(1)}\right)^{\top} \\
\vdots \\
\left(w_{T+1}^{(N)}\right)^{\top}
\end{array}\right]
$$

Then we can rewrite

$$
\begin{aligned}
{\left[\begin{array}{ll}
\hat{A} & \hat{B}
\end{array}\right]^{\top} } & =\arg \min _{(A, B)} \sum_{i=1}^{N}\left\|x_{T+1}^{(i)}-A x_{T}^{(i)}-B u_{T}^{(i)}\right\| \\
& =\arg \min _{(A, B)}\left\|X_{N}-Z_{N}\left[\begin{array}{ll}
A & B
\end{array}\right]^{\top}\right\|_{F}^{2} \\
& =\left[\begin{array}{ll}
A & B
\end{array}\right]^{\top}+\left(Z_{N}^{\top} Z_{N}\right)^{-1} Z_{N}^{\top} W_{N}
\end{aligned}
$$

where,

$$
\begin{aligned}
Z_{N}^{\top} W_{N} & =\sum_{i=1}^{N}\left[\begin{array}{c}
x_{T}^{(i)} \\
u_{T}^{(i)}
\end{array}\right]\left(w_{T}^{(i)}\right)^{\top} \\
Z_{N}^{\top} Z_{N} & =\sum_{i=1}^{N}\left[\begin{array}{l}
x_{T}^{(i)} \\
u_{T}^{(i)}
\end{array}\right]\left[\begin{array}{c}
x_{T}^{(i)} \\
u_{T}^{(i)}
\end{array}\right]^{\top}
\end{aligned}
$$

Notice that $Z_{N}^{\top} Z_{N}$ acts as the denominator and $Z_{N}^{\top} W_{N}$ acts as the numerator.
From this, we can define the error in (A, B), i.e., spectral norm bounds, as

$$
\begin{aligned}
& E_{A}:=(\hat{A}-A)^{\top}=\left[\begin{array}{ll}
I_{n_{x}} & 0_{n_{x} \times n_{u}}
\end{array}\right]\left(Z_{N}^{\top} Z_{N}\right)^{-1} Z_{N}^{\top} W_{N} \\
& E_{B}:=(\hat{B}-B)^{\top}=\left[\begin{array}{ll}
0_{n_{x} \times n_{u}} & I_{n_{u}}
\end{array}\right]\left(Z_{N}^{\top} Z_{N}\right)^{-1} Z_{N}^{\top} W_{N}
\end{aligned}
$$

4.3 Error bounds for E_{A} and E_{B}

We will focus on E_{A}. Similar arguments hold for E_{B}.
We know that $w_{t} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2} I_{n}\right)$.
For, $\left[\begin{array}{ll}x_{T}^{(i)} & u_{T}^{(i)}\end{array}\right]^{\top}$,
Through an inductive argument, we can derive that

$$
X_{T}=\sum_{t=1}^{T} A^{t-1}\left(B u_{T-t-1}+w_{T-t-1}\right)
$$

By the linearity of expectation

$$
\mathbb{E} X_{T}=0
$$

similarly,

$$
\mathbb{E} X_{T} X_{T}^{\top}=\sum_{t=1}^{T} A^{t-1} B B^{\top}\left(A^{t-1}\right)^{\top} \sigma_{u}^{2}+\sum_{t=1}^{T} A^{t-1}\left(A^{t-1}\right)^{\top} \sigma_{w}^{2}
$$

Therefore,

$$
\left[\begin{array}{c}
x_{T}^{(i)} \\
u_{T}^{(i)}
\end{array}\right] \stackrel{\text { i.i.d. } \mathcal{N}}{\sim}\left(0,\left[\begin{array}{cc}
\sigma_{u}^{2} \Lambda_{C}(A, B, T)+\sigma_{w}^{2} \Lambda_{C}(A, I, T) & 0 \\
0 & \sigma_{u}^{2} I_{n_{u}}
\end{array}\right]\right)
$$

where, $\Lambda_{C}(A, B, T)=\sum_{t=0}^{T} A^{t} B B^{\top}\left(A^{\top}\right)^{t}$ is the T-step controllability Grammian. Note that the singular values of the grammian relates to how easy the system is to identify.
Now we derive the bounds on $\|\hat{A}-A\|_{2}$, Define $Q_{A}=\left[I_{n_{x}} 0_{n_{x} \times n_{u}}\right]$, then

$$
\begin{aligned}
\|\hat{A}-A\| & =\left\|Q_{A}\left(Z_{N}^{\top} Z_{N}\right)^{-1} Z_{N}^{\top} W_{N}\right\| \\
& =\left\|Q_{A}\left(\Sigma_{x}^{1 / 2} Y_{N}^{\top} \Sigma_{x}^{1 / 2}\right)^{-1} \Sigma_{x}^{1 / 2} Y_{N}^{\top} W_{N}\right\| \\
& =\left\|Q_{A} \Sigma_{x}^{-1 / 2}\left(Y_{N}^{\top} Y_{N}\right)^{-1} Y_{N}^{\top} W_{N}\right\| \\
& =\left\|\left[\begin{array}{ll}
\Sigma_{x}^{-1 / 2} & 0
\end{array}\right]\left(Y_{N}^{\top} Y_{N}\right)^{-1} Y_{N}^{\top} W_{N}\right\|
\end{aligned}
$$

(via the sub-multiplicative property of the spectral norm)

$$
\leq\left\|\Sigma_{x}^{-1 / 2}\right\| \frac{\left\|Y_{N}^{\top} W_{N}\right\|}{\lambda_{\min }\left(Y_{N}^{\top} Y_{N}\right)}=\lambda_{\min }^{-1 / 2}\left(\Sigma_{x}\right) \frac{\left\|Y_{N}^{\top} W_{N}\right\|}{\lambda_{\min }\left(Y_{N}^{\top} Y_{N}\right)}
$$

where $Y_{N}:=\left[y_{i}^{\top}\right]_{i=1}^{N}$, with $y_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, I_{n_{x}+n_{u}}\right)$
In a similar manner, it can be shown that

$$
\|\hat{B}-B\|_{w} \leq \frac{1}{\sigma_{u}} \frac{\left\|Y_{N}^{\top} W_{N}\right\|_{2}}{\lambda_{\min }\left(Y_{N}^{\top} Y_{N}\right)}
$$

5 Proof Strategy

In order to derive the bounds, similar to the scalar case:

- First, find high probability upper bound on $\left\|Y_{N}^{\top} W_{N}\right\|_{2}$
- Next, find high probability lower bound on $\lambda_{\min }\left(Y_{N}^{\top} Y_{N}\right)$
- Union bound to combine the two bounds, similar to before.
- Need only one other trick to use scalar random variable concentration bounds to control the singular values of random matrices
- Start with upper bound
- Use the variational form of operator norm, pointwise bound, plus a covering argument

6 Upper bound on $\left\|Y_{N}^{\top} W_{N}\right\|_{2}$

First, we state the result,
Proposition 3. Let $x_{i} \in \mathbb{R}^{n}$ and $w_{i} \in \mathbb{R}^{m}$ be such that $x_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \Sigma_{x}\right)$ and $w_{i} \stackrel{i . i . d .}{\sim} N\left(0, \Sigma_{w}\right)$, and let $M=\sum_{i=1}^{N} x_{i} w_{i}^{\top}$. Fixing a failure probability $\delta \in(0,1]$ and let $N \geq \frac{1}{2}(n+m) \log (9 / \delta)$. Then, with probability at least $1-\delta$

$$
\|M\| \leq 4\left\|\Sigma_{x}\right\|^{1 / 2}\left\|\Sigma_{w}\right\|^{1 / 2} \sqrt{N(n+m) \log (9 / \delta)}
$$

Note how the bound depends on $n+m$, meaning it depends on the size of the system.
Proof. Define

$$
\begin{array}{rlr}
M & =\Sigma_{x}^{1 / 2}\left(\Sigma_{i=1}^{N} Y_{i} Z_{i}^{T}\right) \Sigma_{w}^{1 / 2} & \text { where } Y_{i} \sim N\left(0, I_{n}\right), Z_{i} \sim N\left(0, I_{m}\right) \\
\|M\| & \left.\leq\left\|\Sigma_{x}^{1 / 2}\right\|\left\|\Sigma_{w}^{1 / 2}\right\| \| \Sigma_{i=1}^{N} Y_{i} Z_{i}^{T}\right) \| &
\end{array}
$$

Here,

$$
\left.\| \Sigma_{i=1}^{N} Y_{i} Z_{i}^{T}\right) \|_{2}=\sup \sum_{i=1}^{N}\left(u^{\top} y_{i}\right)\left(z_{i}^{\top} v\right) \quad \text { where }\|u\|=\|v\|=1, u \in \mathbb{R}^{n}, v \in \mathbb{R}^{m}
$$

It's at this point that we approximate the supremum with an ϵ-net.
Definition 1 (ϵ-net). (HDP, Ch. 4.2) Let (T, d) be a metric space. Consider a subset $K \subset T$ and let $\epsilon>0$. A subset $\mathcal{N} \subseteq K$ is called an ϵ-net of K if every point in K is within distance ϵ of some point \mathcal{N}, i.e.

$$
\forall x \in K \exists x_{0} \in \mathcal{N}: d\left(x, x_{0}\right) \leq \epsilon
$$

Equivalently, \mathcal{N} is an ϵ-net of K if and only if K can be covered by balls with centers in N and radii ϵ.
Definition 2 (Covering numbers). The smallest possible cardinality of an ϵ-net of K is called the covering number of K and is denoted $\mathcal{N}(K, d, \epsilon)$. Equivalently, $\mathcal{N}(K, d, \epsilon)$ is the smallest number of closed balls with centers in K and radii ϵ whose union covers K.

Using the ϵ-net trick which grids up the space,
Let $\left\{u_{k}\right\}_{k=1}^{N_{\epsilon}},\left\{v_{k}\right\}_{k=1}^{M_{\epsilon}}$ be such that,

$$
\begin{array}{ll}
\forall\|u\|=1,\left\|u-u_{k}\right\| \leq \epsilon & \text { for some } u_{k} \\
\forall\|v\|=1,\left\|v-v_{k}\right\| \leq \epsilon & \text { for some } v_{k}
\end{array}
$$

In other words they are the ϵ-coverings of the \mathcal{S}^{n-1} and \mathcal{S}^{m-1}, respectively. Then,

$$
\begin{aligned}
u^{\top} M v & =\left(u-u_{k}^{\top}\right) M v+u_{k}^{\top} M\left(v-v_{l}\right)+u_{k}^{\top} M v_{l} \\
& \leq\left\|u-u_{k}\right\|\|M\|\|v\|+\left\|u_{k}\right\|\|M\|\left\|v-v_{l}\right\|+u_{k}^{\top} M v_{l} \\
& =2 \epsilon\|M\|+\max _{k, l} u_{k}^{\top} M v_{l}
\end{aligned}
$$

Taking the supremum,

$$
\begin{aligned}
& \|M\| \leq 2 \epsilon\|M\|+\max _{k, l} u_{k}^{\top} M v_{l} \\
& \|M\| \leq \frac{1}{1-2 \epsilon} \max _{k, l} u_{k}^{\top} M v_{l}
\end{aligned}
$$

If we set $\epsilon=1 / 4$ and do a standard volume comparison, then we can show that

$$
\begin{gathered}
N_{\epsilon} \leq 9^{m} \\
M_{\epsilon} \leq 9^{n}
\end{gathered}
$$

So the total number of pairs $\left(u_{k}, v_{k}\right) \leq 9^{n+m}$ Substituting back in, we get

$$
\begin{array}{ll}
\left.\| \Sigma_{i=1}^{N} Y_{i} Z_{i}^{T}\right) \|_{2} \leq 2 \max _{1 \leq k \leq 9^{n}, 1 \leq l \leq 9^{m}} \sum_{i=1}^{N}\left(w_{k}^{\top} y_{i}\right)\left(z_{i}^{\top} v_{l}\right) \\
\left.\| \Sigma_{i=1}^{N} Y_{i} Z_{i}^{T}\right) \|_{2} \leq 2 \sum_{i=1}^{N}\left(u_{k}^{\top} y_{i}\right)\left(z_{i}^{\top} v_{l}\right) & \forall 9^{(m+n)}\left(u_{k}, v_{l}\right) \text { pairs }
\end{array}
$$

Applying the sum of sub-exponential r.v.s concentration bounds with probability of failure $\frac{\delta}{9^{n+m}}$. Then with probability $1-\frac{\delta}{9^{n+m}}$

$$
\sum\left(u_{k}^{\top} y_{i}\right)\left(z_{t}^{\top} v_{l}\right) \leq 2 \sqrt{N \log \left(\frac{9^{n+m}}{\delta}\right)} \leq 2 \sqrt{N(n+m) \log \frac{1}{\delta}}
$$

Union bound over all 9^{n+m} such events to get the result. Additional details can be found in [1]

7 Lower bound on $\lambda_{\min }\left(Y_{N}^{\top} Y_{N}\right)$

Using a similar approach, we obtain the lower bound.
Proposition 4. Let $x_{i} \in \mathbb{R}^{n}$ be drawn i.i.d. from $\mathcal{N}\left(0, \Sigma_{x}\right)$, and set $M=\sum_{i=1}^{N} x_{i} x_{i}^{\top}$. Fix a failure probability $\delta \in(0,1]$ and let $N \geq 24 n \log (9 / \delta)$. Then with probability at least $1-2 \delta$,

$$
\lambda_{\min }(M) \geq \lambda_{\min }\left(\Sigma_{x}\right) N / 2
$$

Proof. The proof utilizes the previous results and an additional covering argument. Refer to [1]

8 Putting it all together

With Proposition 3 and Proposition 4, we union bound over all of the relevant failure probabilities. Theorem 8.1. Fix a failure probability $\delta \in(0,1]$ and assume that $N \geq 24\left(n_{x}+n_{u}\right) \log (54 / \delta)$. Then it holds that with probability at least $1-\delta$,

$$
\begin{aligned}
& \|\hat{A}-A\|_{2} \leq 8 \sigma_{w} \lambda_{\min }^{-1 / 2}\left(\Sigma_{x}\right) \sqrt{\frac{\left(2 n_{x}+n_{u}\right) \log (54 / \delta)}{N}} \\
& \|\hat{B}-B\|_{2} \leq 8 \frac{\sigma_{w}}{\sigma_{u}} \sqrt{\frac{\left(2 n_{x}+n_{u}\right) \log (54 / \delta)}{N}}
\end{aligned}
$$

Note, different bounds with better constants can be found in [2].

9 Data dependent bounds

The previous results rely on properties of the true underlying system and therefore cannot be used to implemented in practice. Therefore, two data-dependent approaches are used to compute error estimates.
Proposition 9.1. Assuming we have N idependent samples $\left(y^{(l)}, x^{(l)}, u^{(l)}\right)$ such that

$$
\left.y^{(l)}=A x^{(l)}+B u^{(l)}+w^{(l)}\right)
$$

where $w^{(l)} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2} I_{n_{x}}\right)$ and are independent from $x^{(l)}$ and $u^{(l)}$. Assume that $N \geq n_{x}+n_{u}$, Then with probability $1-\delta$, we have

$$
\left[\begin{array}{l}
(\hat{A}-A)^{\top} \\
(\hat{B}-B)^{\top}
\end{array}\right]\left[\begin{array}{l}
(\hat{A}-A)^{\top} \\
(\hat{B}-B)^{\top}
\end{array}\right]^{\top} \preceq C_{n_{x}, n_{u}, \delta}^{2}\left(\sum_{l=1}^{N}\left[\begin{array}{l}
x^{(l)} \\
u^{(l)}
\end{array}\right]\left[\begin{array}{l}
x^{(l)} \\
u^{(l)}
\end{array}\right]^{\top}\right)^{-1}
$$

, where $C_{n_{x}, n_{u}, \delta}^{2}=\delta_{w}^{2}\left(\sqrt{n_{x}+n_{u}}+\sqrt{n_{x}}+\sqrt{2 \log (1 / \delta)}\right)^{2}$. If the right hand side has zero as an eigenvalue, we define the inverse of that eigenvalue to be infinity.

The proof can be found in [2].
We can obtain better bounds by utilizing the bootstrap technique [3]. Lecture notes regarding bootstrap can be found in [4]. The algorithm can be found in [1].

(a) Estimates for A. Includes actual error and the data-(b) Estimates for B. Includes actual error and the datadependent bounds, as well as the bootstrap error estimatesdependent bounds, as well as the bootstrap error estimates

Figure 1: Results of numerical example.

10 Numerical example

In order to demonstrate the previous results, we apply these methods to estimating the parameters in a planar model for a quadrotor.
More complicated formulations of the dynamics of a quadrotor are possible, but we linearize the dynamics around the hover state for a quadrotor. The resulting state-space model can be expressed as follows (Assuming full observability):

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}+B \mathbf{u}_{k}
$$

where,

$$
\mathbf{x}=\left[\begin{array}{c}
x \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
r \\
p \\
t
\end{array}\right] \quad A_{k}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0.1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0.1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0.1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] B_{k}=\left[\begin{array}{ccc}
0.049 & 0 & 0 \\
0 & 0.049 & 0 \\
0 & 0 & 0.01 \\
0.98 & 0 & 0 \\
0 & -0.98 & 0 \\
0 & 0 & 0.2
\end{array}\right]
$$

We set the parameters, gravity $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the mass of the quadrotor $m=0.5 \mathrm{~kg}$, the inputs are bounded with roll r, pitch $p \leq 45$ degrees, and thrust $t \leq 5$. The matrices shown are after discretization.
For the experiment, $\sigma_{w}=0.1, \sigma_{u, r}=\sigma_{u, p}=0.7854 / 3, \sigma_{u, t}=5 / 3$.
The results are shown in Fig. 1a and 1b.
As can be seen from the figure, the data-dependent bounds estimate the overall error across the number of rollouts and improves as the number of rollouts increases. The bootstrap bound also shows improvement (Actually did not work).

References

[1] Nikolai Matni and Stephen Tu. A Tutorial on Concentration Bounds for System Identification. arXiv:1906.11395 [cs, math, stat], August 2019. arXiv: 1906.11395.
[2] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the Sample Complexity of the Linear Quadratic Regulator. arXiv:1710.01688 [cs, math, stat], October 2017. arXiv: 1710.01688.
[3] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1-26, January 1979.
[4] Lecture13.pdf.
The (very naive and inefficient) code used to derive the results are shown here: The code for this problem is as follows:

```
clear;
clc;
close all;
%Get discretized dynamics
PlantModelQuadSimpleLinear;
rpmax = deg2rad(45); %max roll pitch angle
thrmax = 5*1; %max thrust
%Collect N trials (rollouts), horizon T, find A_hat, B_hat
N = 200;
T = 50;
x0= zeros(6,1);
initial_data_xt = [];
initial_data_xt_1 = [];
std_u_rp = rpmax/3;
std_u_t = thrmax/3;
sigma_w = 0.1;
fail_prob = 0.01;
big_A = [sys_d.A zeros(6,3);zeros (6,6) sys_d.B];
E_A = zeros(N,1);
E_B = zeros(N,1);
bound_A_init = zeros(N,1);
bound_B_init = zeros(N,1);
bootstrap_eA = zeros(N,1);
bootstrap_eB = zeros(N,1);
for n_ind = 1:N
    temp_x = zeros(T,9);
    temp_y = zeros(T,6);
    u0 = [std_u_rp*randn (2,1); std_u_t*randn (1,1)];
    z0= [x0 ; u0];
    x_t = x0;
    u_t = u0;
    z_t = z0;
    for t_ind = 1:T
        x_t_1 = sys_d.A*x_t +sys_d.B*u_t + sigma_w*randn (6,1);
        temp-y(t_ind, :) = x_t_1';
        temp_x(t_ind, :) = [x_t;u_t]';
        u_t = [std_u_rp*randn (2,1); std_u_t*randn (1,1)];
        x_t = x_t_1;
    end
    initial_data_xt = [initial_data_xt; temp_x];
    initial_data_xt_1 = [initial_data_xt_1; temp_y];
    beta = mvregress(initial_data_xt,initial_data_xt_1);
```

```
A_hat = beta(1:6, :)';
B_hat = beta(7:9, :)';
%Compute initial error
E_A(n_ind) = norm(A_hat - sys_d.A);
E_B(n_ind) = norm(B_hat - sys_d.B);
%Compute intial bounds
C_squared = sigma_w^2*( sqrt(9) + sqrt(6) + sqrt(2*log(1/fail_prob)))^2;
error= [(A_hat - sys_d.A)'; (B_hat - sys_d.B)'];
error_norm = error*error';
M_mat = inv(initial_data_xt' * initial_data_xt);
error_bound_matrix = C_squared*M_mat;
%Compute bound for A, B
QA = [eye(6) zeros (6,3)];
QB = [zeros (3,6) eye(3)];
bound_A_init(n_ind) = sqrt(C_squared)*sqrt(norm(QA*M_mat*QA'));
bound_B_init(n_ind) = sqrt(C_squared)*sqrt(norm(QB*M_mat*QB'));
fprintf('Rollout %d\n',n_ind)
fprintf('Initial E_A: %g\n', E_A(n_ind))
fprintf('Initial Bound: %g\n', bound_A_init(n_ind))
fprintf('Initial E_B: %g\n', E_B(n_ind))
fprintf('Initial Bound: %g\n', bound_B_init(n_ind))
%Boostrap estimation of E_A and E_B, M times
M= 100;
L = 50;
bootstrap_data_xt = [];
bootstrap_data_xt_1 = [];
bootstrap_eA_set = zeros(M,1);
bootstrap_eB_set = zeros(M,1);
for m_ind = 1:M
    for l_ind = 1:L
        temp_x = zeros(T,9);
        temp-y = zeros(T,6);
        u0 = [std_u_rp*randn(2,1); std_u_t*randn(1,1)];
        z0= [x0 ; u0];
        x_t = x0;
        u_t = u0;
        z_t = z0;
        for t_ind = 1:T
            x_t_1 = A_hat*x_t +B_hat*u_t + sigma_w*randn(6,1);
            temp_y(t_ind, :) = x_t_1';
            temp_x(t_ind, :) = [x_t;u_t]';
                u_t = [std_u_rp*randn (2,1); std_u_t*randn(1,1)];
                x_t = x_t_1;
        end
        bootstrap_data_xt = [bootstrap_data_xt; temp_x];
        bootstrap_data_xt_1 = [bootstrap_data_xt_1; temp_y];
    end
    %Find A_tilde, B_tilde
    beta = mvregress(bootstrap_data_xt,bootstrap_data_xt_1);
    A_tilde = beta(1:6, :)';
    B_tilde = beta(7:9, :)';
    bootstrap_eA_set(m_ind) = norm(A_tilde - A_hat);
    bootstrap_eB_set(m_ind) = norm(B_tilde - B_hat);
```

Lecture 4: Finite-data guarantees and data-dependent bounds

```
    end
    %output 100(1-delta) percentile
    bootstrap_eA(n_ind) = quantile(bootstrap_eA_set, 1-fail_prob);
    bootstrap_eB(n_ind) = quantile(bootstrap_eB_set, 1-fail_prob);
    fprintf('Bootstrap E_A: %g\n', bootstrap_eA(n_ind))
    fprintf('Bootstrap E_B: %g\n', bootstrap_eB(n_ind))
end
save ('results.mat')
figure; plot(E_A); hold on; plot(bound_A_init); plot(bootstrap_eA);
legend({'E_A'; 'Initial Bound'; 'Bootstrap Bound'})
title('Error estimates vs iterations for A')
saveas(gcf, 'E_A_plot2.png')
figure; plot(E_B); hold on; plot(bound_B_init); plot(bootstrap_eB);
legend({'E_B'; 'Initial Bound'; 'Bootstrap Bound'})
title('Error estimates vs iterations for B')
saveas(gcf, 'E_B_plot2.png')
```

