
ESE 680-004: Learning and Control Fall 2019

Lecture 3: Concentration Bounds
Lecturer: Nikolai Matni Scribes: Zongyu Dai

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

The previous lecture focused on identifying the state-space parameters (A,B,C,D) of an unknown linear-
time-invariant (LTI) system using subspace methods. Although these methods have been shown to be asymp-
totically consistent (i.e., up to a similarity transformation, the estimated parameters converge to the true
parameters as the number of data points tends to infinity), in this class, we are interested in finite data
guarantees. In particular, we wish to quantify the uncertainty in our estimates as a function of the number
of data-points, so that it can then be used as part of a robust control synthesis procedure. In this lecture, we
introduce technical tools known as concentration bounds, and show how they can be used to derive exactly
these kinds of bounds for a simplified scalar dynamical system.

1 Concentration bounds

1.1 Bounded Random Variables

To build some intuition we begin by studying the behavior of almost surely bounded random variables. We

assume {xi}Ni=1
i.i.d.∼ PN , and let xi ∈ [a, b] with probability 1.

Theorem 1.1 (McDiarmid’s Inequality [1]). let xi ∈ X for i = 1, 2, ..., N they are independent but not
necessarily identical. Then let F : Xn → R satisfies for all x1, x2, ..., xN , x

′

i ∈ X

sup
x1...xN ,x

′
i

|F (x1, ..., xN )− F (x1, ...xi−1, x
′

i, xi+1, ...xN )| ≤ ci (1)

then we have that

P [F (x1, ..., xN )− E[F (x1, ..., xN )] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
(2)

Corollary 1 (Hoeffding’s inequality for bounded random variables). Let {Xi}Ni=1
i.i.d.∼ pN be such that Xi ∈

[a, b] a.s.. Then

P

[
1

N

N∑
i=1

Xi − EX1 ≥ t

]
≤ exp

(
−2Nt2

(b− a)2

)
. (3)

Proof: Set F (x1, . . . , xN ) = 1
N

∑N
i=1 xi and notice that it satisfies the boundedness condition with ci ≡

(b− a)/N for all i.

Example 1. Let {Xi}Ni=1
i.i.d.∼ pN be random vectors in X , and let Ω ⊆ X be some set. Let P̂N =

1
N

∑N
i=1 1x∈Ω,and notice that EP̂N = P [x ∈ Ω]. As 1x∈Ω ∈ {0, 1} for all x, it follows by equation (3)

that
P
[
P̂N − P [x ∈ Ω] ≥ t

]
≤ exp

(
−2Nt2

)
. (4)

We can obtain a similar bound on the probability of the event
{
P̂N − P [x ∈ Ω] ≤ −t

}
occurring: it then

follows by union bounding over these two events that

P
[∣∣∣P̂N − P [x ∈ Ω]

∣∣∣ ≥ t] ≤ 2exp
(
−2Nt2

)
. (5)

1
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Thus we have seen that in the case of a.s. bounded random variables, concentration of measure does indeed
occur. We will now see that similar concentration occurs for random variables drawn from distributions with
sufficiently rapidly decaying tails.

1.2 Sub-Gaussian Random Variables

We begin by recalling the Chernoff bound, which states that for a random variable X with mean EX, and
moment generating function (MGF) E

[
eλ(X−EX)

]
defined for all |λ| ≤ b, it holds that

logP [X − EX ≥ t] ≤ inf
λ∈[0,b]

[
logE

[
eλ(X−EX)

]
− λt

]
. (6)

We now turn our attention to Gaussian random variables, and recall that for X ∼ N (µ, σ2), we have

that E
[
eλ(X−µ)

]
= exp

(
σ2λ2

2

)
for all λ ∈ R. Substituting this into the Chernoff bound (6) and solving for

λ? = t/σ2, we immediately obtain

P [X − µ ≥ t] ≤ exp

(
−t2

2σ2

)
. (7)

Recalling that if X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) then aX1 + bX2 ∼ N (aµ1 + bµ2, a

2σ2
1 + b2σ2

2), it

follows immediately that for Xi
i.i.d.∼ N (µ, σ2), it holds that

P

[
1

N

N∑
i=1

Xi − µ ≥ t

]
≤ exp

(
−Nt2

2σ2

)
. (8)

Once again, a similar bound can be obtained on the probability of event
{

1
N

∑N
i=1Xi − µ ≤ −t

}
occurring:

it then follows by union bounding over these two events that

P

[∣∣∣∣∣ 1

N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
]
≤ 2exp

(
−Nt2

2σ2

)
(9)

We now generalize these results to random variables with MGFs dominated by that of a Gaussian random
variable.

Definition 1 (Sub-Gaussian Random Variable). A random variable X with mean EX is sub-Gaussian if
there exists a positive number σ2 such that

E
[
eλ(X−EX)

]
≤ exp

(
λ2σ2

2

)
∀λ ∈ R. (10)

An example of random variables that are sub-Gaussian but not Gaussian are bounded random variables
– it can be shown that a random variable X taking values in [a, b] almost surely satisfies equation (10) with
parameter σ2 = (b− a)2/4.

Further, from this definition, it follows immediately that from the Chernoff bound that all sub-Gaussian
random variables satisfy the concentration bound (7). One can also check that if X1 and X2 are sub-
Gaussian with parameters σ2

1 and σ2
2 , then X1 +X2 is sub-Gaussian with parameter σ2

1 +σ2
2 , from which we

immediately obtain Hoeffding’s Inequality.

Theorem 1.2 (Hoeffding’s Inequality). Let {Xi}Ni=1 be iid sub-Gaussian random variables with parameter
σ2. Then

P

[
1

N

N∑
i=1

Xi − EX1 ≥ t

]
≤ exp

(
−Nt2

2σ2

)
. (11)
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An aside on probability inversion and two sided bounds Rather than statements about the proba-
bility of large deviations, as in bound (11), we are often interested in the probability that a random variable
concentrates near its mean. To do so, we employ probability inversion: if we are willing to tolerate a large
deviation occurring with probability at most δ, one may invert bound (11) by setting δ = RHS of (11) and
solving for t. This allows us to certify that with probability at least 1− δ that

1

N

N∑
i=1

Xi ≤ EX1 +

√
2σ2 log(1/δ)

N
. (12)

Applying the same reasoning to the event {X −EX ≤ −t} yields a similar bound, from which it follows, by
the union bound, that with probability at least 1− 2δ that∣∣∣∣∣ 1

N

N∑
i=1

Xi − EX1

∣∣∣∣∣ ≤
√

2σ2 log(1/δ)

N
. (13)

1.3 Sub-Exponential Random Variables

Revisiting the error term defined in (22), we see that we still do not have the requisite tools to perform the
desired analysis.

Example 2 (Products of Gaussians are not Sub-Gaussian). Motivated by the error term in (22), we compute

the MGFs for X2 and XW , where X,W
i.i.d.∼ N (0, 1). Direct computation of the resulting integrals show that

E
[
eλ(X2−1)

]
= e−λ

1−2λ if λ < 1/2,

E
[
eλ(XW )

]
= 1√

π(1−λ2)
if |λ| < 1.

(14)

These random variables are clearly not sub-Gaussian, as their MGFs do not exist for all λ ∈ R. However,
notice that they can be bounded by the MGF of a Gaussian random variable in a neighborhood of the origin.
In particular we have that

E
[
eλ(X2−1)

]
= e−λ

1−2λ ≤ exp
(

4λ2

2

)
∀|λ| < 1/4

E
[
eλ(XW )

]
= 1√

π(1−λ2)
≤ exp

(
2λ2

2

)
∀|λ| < 1/

√
2.

The first inequality follows from some calculus, and the second by leveraging that − log(1− x) ≤ x(1− x)−1

for 0 ≤ x < 1.

We now show that MGFs exhibiting behavior as above also concentrate.

Definition 2. A random variable X with mean EX is sub-exponential with parameters (ν2, α) if

E
[
eλ(X−EX)

]
≤ exp

(
ν2λ2

2

)
∀|λ| ≤ 1

α
. (15)

Example 2 therefore demonstrated that for X,W
i.i.d.∼ N (0, 1), X2 is sub-exponential with parameters

(4, 4), and XW is sub-exponential with parameters (2,
√

2).

Proposition 1 (Sub-exponential tail bound). if X is sub-exponential with parameters (ν2, α), then

P [X − EX ≥ t] ≤

{
exp

(
−t2
2ν2

)
if 0 ≤ t ≤ ν2

α

exp
(−t

2α

)
if t > ν2

α .
(16)
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Remark: Thus we see that for sufficiently small deviations 0 ≤ t ≤ ν2/α, sub-exponential random
variables exhibit sub-Gaussian concentration – indeed, informally, one may view sub-Gaussian random vari-
ables as the limit of a sub-exponential random variable with α → 0. Finally, we note that we can show
that for X1 and X2 sub-exponential random variables with parameters (ν2

i , α
2
i ), we have that X1 + X2 is

a sub-exponential random variable with parameters (ν2
1 + ν2

2 ,max{α1, α2}). Now we give the proof for this
proposition.
Proof. From [2]: by recentering as needed, we may assume without loss of generality that µ = 0. We follow
the usual Chernoff-type approach: combining it with the definition of a sub-exponential variable yields the
upper bound

P [X ≥ t] ≤ e−λtE[eλt] ≤ exp

(
−λt+

λ2ν2

2

)
valid for all λ ∈ [0, α−1), and we define g(λ, t) = −λt + λ2ν2

2 . In order to complete the proof, it remains to
compute, for each fixed t ≥ 0, the quantity g∗(t) = infλ∈[0,α−1) g(λ, t).Note that the unconstrained minimum

of the function g(., t) occurs at λ∗ = t
ν2 . if 0 ≤ t ≤ ν2

α , then this unconstrained optimum corresponds to the

constrained minimum as well, so that g∗(t) = − t2

2ν2 over this interval.

Otherwise, we may assume that t ≥ ν2

α . In this case, since the function g(., t) is monotonically decreasing
in the interval [0, λ∗), the constrained minimum is achieved at the boundary point λ′ = α−1, and we have

g∗(t) = g(λ′, t) = − t
α

+
1

2α

ν2

α
≤ − t

2α

where the inequality uses the fact that ν2

α ≤ t.

As shown in Example 2,the sub-exponential property can be verified by explicitly computing or bounding
the moment generating function. This direct calculation may be impracticable in many settings, so it is
natural to seek alternative approaches. One such method is based on control of the polynomial moments
of variable X. Given a random variable X with mean µ = E[X] and variance σ2 = E[X2]− µ2, we say that
Bernstein’s condition with parameter b holds if

|E[(X − µ)k]| ≤ 1

2
k!σ2bk−2 for k = 2, 3, 4... (17)

One sufficient condition for Bernstein’s condition to hold is that X be bounded; in particular, if |X−µ| ≤ b,
then it is straightforward to verify that condition 17 holds. Even for bounded variables, our next result will
show that the Bernstein condition can be used to obtain tail bounds that may be tighter than the Hoeffding
bound. Moreover, Bernstein’s condition is also satisfied by various unbounded variables, a property which
lends it much border applicability.

When X satisfies the Bernstein’s condition, then it is sub-exponential with parameters determined by σ2

and b. Indeed, by the power-series expansion of the exponential, we have

E[eλ(X−µ)] = 1 + λ2σ2

2 +
∑∞
k=3 λ

k E[(X−µ)k]
k!

≤ 1 + λ2σ2

2 + λ2σ2

2

∑∞
k=3(|λ|b)k−2

(18)

where the inequality make use of Bernstein’s condition. For any |λ| < 1
b , we can sum the geometric series

so as to obtain

E[eλ(X−µ)] ≤ 1 +
λ2σ2

2

1− b|λ|
≤ e

λ2σ2

2
1−b|λ| (19)

where the second inequality follows from the bound 1 + t ≤ et. Consequently, we conclude that

E[eλ(X−µ)] ≤ e
λ2(
√

2σ)2

2 for |λ| < 1

2b
(20)
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As a consequence, an application of sub-exponential tail bound leads directly to tail bounds on a random
variables satisfying the Bernstein’s condition. However, the resulting tail bound can be sharpened slightly,
at least in terms of constant factors, by making direct use of the upper bound 19. We summarize in the
following:

Proposition 2 (Bernstein-type bound). for any random variable satisfying the Bernstein’s condition, we
have

E
[
eλ(X−EX)

]
≤ e

λ2σ2

2
1−b|λ| for |λ| < 1

b
and, moreover, the concentration inequality

P [|X − µ| ≥ t] ≤ 2e
− t2

2(σ2+bt) for t ≥ 0

We have proved the first inequality in the discussion preceding this proposition. Using this bound on the
moment generating function, the tail bound follows by setting λ = t

σ2+bt ∈ [0, 1
b ) in the Chernoff bound, and

then simplifying the resulting expression.

2 Scalar dynamical system

Consider the scalar dynamical system
xt+1 = axt + ut + wt, (21)

for wt
i.i.d.∼ N (0, σ2

w), and a ∈ R an unknown parameter. Our goal is to estimate a, and to do so we inject

excitatory Gaussian noise via ut
i.i.d.∼ N (0, σ2

u). We run N experiments over a horizon of T + 1 time-steps, and
then solve for our estimate â via the least-squares problem

â = arg mina
∑N
i=1(x

(i)
T+1 − ax

(i)
T − u

(i)
T )2

= a+
∑N
i=1 x

(i)
T w

(i)
T∑N

i=1(x
(i)
T )2

=: a+ eN .
(22)

Notice that we are using only the last two data-points from each trial – this simplifies the analysis of the
error term eN greatly as each of the summands in the numerator and denominator are now i.i.d. random
variables. Our goal is to provide high-probability bounds on this error term in this lecture.

First, we observe that

x
(i)
T

i.i.d.∼ N (0, (σ2
w + σ2

u)

T∑
t=0

a2t). (23)

In what follows, we let σ2
x := (σ2

w + σ2
u)
∑T
t=0 a

2t, which we recognize as the (variance weighted) finite-time
controllability Gramian of the scalar system (21).

Theorem 2.1. Consider the least squares estimator (22). Fix a failure probability δ ∈ (0, 1], and assume
that N ≥ 32 log(2/δ). Then with probability at least 1− δ, we have that

|eN | ≤ 4
σw
σx

√
log(4/δ)

N
. (24)

This theorem follows immediately by invoking the next two propositions with failure probability δ/2 and
union bounding.

Proposition 2.2. Fix δ ∈ (0, 1], and let N ≥ 32 log(1/δ). Then with probability at least 1− δ
N∑
i=1

(x
(i)
T )2 ≥ σ2

x

N

2
. (25)
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Proof. From (23), we have that xT /σx ∼ N (0, 1). Thus from Example 2, x2
T /σ

2
x is sub-exponential with

parameters (4, 4), and
∑N
i=1

(
x
(i)
T /σx

)2

is sub-exponential with parameters (4N, 4). From the tail bound (16),

we see that

P

σ2
x

N∑
i=1

(
x

(i)
T

σx

)2

−Nσ2
x ≤ −t

 = P

 N∑
i=1

(
x

(i)
T

σx

)2

−N ≤ −t
σ2
x

 ≤ exp

(
−t2

8Nσ4
x

)
,

for all t ≤ Nσ2
x. Inverting this bound to solve for a failure probability of δ, we see that t = σ2

x

√
8N log(1/δ) ≤

Nσ2
x, where the inequality follows from out assumed lower bound on N . We therefore have, with probability

at least 1− δ, that

N∑
i=1

(x
(i)
T )2 ≥ σ2

x(N −
√

8N log(1/δ)) ≥ σ2
x

N

2
,

where the final inequality follows from the assumed lower bound on N .

Proposition 3. Fix δ ∈ (0, 1], and let N ≥ 1
2 log(2/δ). Then with probability at least 1− δ∣∣∣∣∣

N∑
i=1

x
(i)
T w

(i)
T

∣∣∣∣∣ ≤ 2σxσw
√
N log(2/δ). (26)

Proof. By a similar argument as the previous proof, we have that
∑N
i=1

x
(i)
T w

(i)
T /σxσw is sub-exponential with

parameters (4N,
√

2), from which it follows that

P

[∣∣∣∣∣
N∑
i=1

x
(i)
T w

(i)
T

∣∣∣∣∣ ≥ t
]

= P

[∣∣∣∣∣
N∑
i=1

x
(i)
T w

(i)
T

σxσw

∣∣∣∣∣ ≥ t

σxσw

]
≤ 2exp

(
−t2

4Nσ2
xσ

2
w

)
,

if t ≤ 2
√

2Nσxσw. Inverting with probability failure δ, we obtain t = 2σxσw
√
N log(2/δ) ≤ 2

√
2Nσxσw,

where the final inequality holds by the assumed lower bound on N . Thus, with probability at least 1 − δ,
(26) holds.

3 Numerical experiment

We use scalar linear system xt+1 = axt+ut+wt to illustrate our bound here. This system has been analyzed
in section 2. We set a = 2, T = 50, δ = 0.1, N = 100 ∼ 2100 and all these experiment numbers satisfy the
inequality N ≥ 32 log( 2

δ ) illustrated in Theorem 3. In both figures, the red line represents true error eN , the
blue line represents the error bound we get in Theorem 3. In figure 1, we set σw = σu = 1. In figure 2, we
set σw = 1, σu = 2.
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Figure 1: δu = 1 δw = 1 N = 100 ∼ 2100, a single experiment has a horizon of 50+1 time-steps, as
experiment number increases, we see error bound and true error both converge to 0
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Figure 2: δu = 2 δw = 1 N = 100 ∼ 2100


