Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

inequality constrained minimization
logarithmic barrier function and central path
barrier method

feasibility and phase | methods

complexity analysis via self-concordance

generalized inequalities
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Inequality constrained minimization

minimize  fo(x)
subject to f@( ) <0, i=1,....m (1)
Ax =0

e f, convex, twice continuously differentiable
o Ac RP*" with rank A =p
e we assume p* is finite and attained

e we assume problem is strictly feasible: there exists x with
x € dom f, fi(z) <0, 1=1,...,m, Ax =0

hence, strong duality holds and dual optimum is attained
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Examples

o LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints
minimize > "  x;logx;
subjectto Fr <g
Ax =1

with dom f, = RY} |

e differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or £,.,-norm approximation via LP

e SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + S0, I_(fi(x))

subject to Az =0b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/1) Y1, log(—fi(x))

subject to Ax =1b

e an equality constrained problem

o fort >0, —(1/t)log(—u) is a
smooth approximation of I_

e approximation improves as t — o0
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logarithmic barrier function

_ _Zlog(_fi(x)), dom ¢ ={x | fi(x) <O0,..., fm(z) <0}

e convex (follows from composition rules)

e twice continuously differentiable, with derivatives

Ms

Vo(r) =

V24(z) = Z sz )WV filz +Z V2 filx)

fz)
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Central path

e for t > 0, define z*(¢) as the solution of

minimize  tfy(z) + ¢(x)
subject to Ax =1b
(for now, assume x*(t) exists and is unique for each ¢ > 0)

e central path is {z*(¢t) | t > 0}

example: central path for an LP

minimize clzx

subject to alx <b;, i=1,...,6

hyperplane cl'z = ¢f'z*(t) is tangent to

level curve of ¢ through x*(t)
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Dual points on central path

xr = x*(t) if there exists a w such that

tV fo(x) + Z Vfi(x)+ ATw =0, Ax =10
i=1

1
— — fi(z)

e therefore, x*(t) minimizes the Lagrangian
L(x, A (1), v* (1)) = fo(x) + Y N (6)fi(x) +v*()" (Az —b)
i=1

where we define \¥(¢) = 1/(—tf;(z*(t)) and v*(t) = w/t
e this confirms the intuitive idea that fy(z*(t)) — p* if t — oo:
g(\* (1), v*(1))
= L(z™(t), \*(1), v*(1))
= fola* (1) — m/t

*

p

Vv
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Interpretation via KKT conditions

r=1x*(t), A = A(t), v = v*(t) satisfy

1. primal constraints: f;(x) <0,i=1,...,m, Ax =10

2. dual constraints: A = 0
3. approximate complementary slackness: —\;f;(x) =1/t,i=1,...
4. gradient of Lagrangian with respect to x vanishes:
Vi) + > NVfi(z) + ATv =0
i=1

difference with KKT is that condition 3 replaces \; f;(z) =0

Interior-point methods
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(x) — Y.~ log(—fi(x))

force field interpretation

e tfo(x) is potential of force field Fy(z) = —tV fo(x)
e —log(—fi(x)) is potential of force field F;(z) = (1/f;(x))V fi(x)

the forces balance at x*(¢):

Interior-point methods
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example

minimize clx
subject to alx <b;, i=1,...,m
e objective force field is constant: Fy(x) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:

—ay 1
Fi(z) = , F; = —
() b; —alx |F:@)]: dist(z, H;)
where H; = {z | al z = b;}
—3c

Interior-point methods
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Barrier method

given strictly feasible x, t := £ > o, u > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing t fo + ¢, subject to Az = b.
2. Update. © := x*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

e terminates with fy(z) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

e centering usually done using Newton's method, starting at current x

e choice of i involves a trade-off: large ;1 means fewer outer iterations,
more inner (Newton) iterations; typical values: p = 10-20

e several heuristics for choice of ¢(0)
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Convergence analysis

number of outer (centering) iterations: exactly

[log(m/ (et“’)))w

log

plus the initial centering step (to compute :c*(t(o)))

centering problem
minimize tfo(x) + ¢(x)

see convergence analysis of Newton's method

e tfy + ¢ must have closed sublevel sets for ¢ > ¢(0)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of tfy + ¢
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

duality ga
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Newton iterations 7

e starts with x on central path ({9 = 1, duality gap 100)
e terminates when ¢t = 10%® (gap 107Y)
e centering uses Newton’'s method with backtracking

e total number of Newton iterations not very sensitive for 1 > 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 2221 exp(aoTkx -+ bOk:))

subject to log 22:1 exp(a,x + bzk)) <0, 1=1,....m

—_
@]
\V]

—_
=)
@)

duality gap
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Newton iterations
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family of standard LPs (A € R™**™)

minimize cl'z

subjectto Ar=b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances

351

Newton iterations

10! 102 103
™m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that

filx) <0, 1=1,...,m, Az =10 (2)
phase |: computes strictly feasible starting point for barrier method
basic phase | method

minimize (over x, s) s
subject to file)<s, i=1,...,m (3)
Ar =b

e if z, s feasible, with s < 0, then z is strictly feasible for (2)
e if optimal value p* of (3) is positive, then problem (2) is infeasible

e if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 17s
subjectto s>=0, fi(x)<s;, i=1,....m
Axr =b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60 -
S 40 S 40!
0 0
e -
c 20 c 20

0 ~ dHmo e e o . 0 e b0 coe o

-1 -=-0.5 0 TO.5 1 1.5 -1 —=0.5 0 TO.5 1 1.5
bi — A; Tmax bz — A; Tsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 inequalities

Interior-point methods
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example: family of linear inequalities Az < b+ vAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase I, terminate when s < 0 or dual objective is positive

2 100!
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g 60, 8
S 40, 1
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+ +
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o 207 o
= | | = | |
—100 —10—27—10—4 —10~6 106 104 o 102 10Y

number of iterations roughly proportional to log(1/|v|)
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Complexity analysis via self-concordance

same assumptions as on page 12-2, plus:

e sublevel sets (of fj, on the feasible set) are bounded

o tfy+ ¢ is self-concordant with closed sublevel sets

second condition

e holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

minimize Y.  x;logz; —  minimize >  x;logx;
subjectto Fzx <Xg subjectto Fr =g, x>0

e needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

utfolw) + o(x) — ptfola™) — pla)
8

#Newton iterations < +c

e bound on effort of computing x+ = x*(ut) starting at x = z*(¢t)
e ~, c are constants (depend only on Newton algorithm parameters)

e from duality (with A = A\ (1), v = v*(¢)):
ptfo(z) + o(x) — ptfo(z™) — (2™)

= ptfo(z) — pt folx +Zlog —pt i fi(x)) —mlog

< ptfo(x) — ptfola utZA fi(z™) —m —mlog

< ptfo(z) — ptg(A,v) —m — mlogu
= m(p—1—logpu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = [

log(m/(tm)e))w (m(u — 1 —log ) n C)

log Y

5104
410% : :
figure shows N for typical values of v, ¢,
3104
z m =100, — —10°
2104 ’ +(0) ¢
110%
Or 1.1 1.2

U

e confirms trade-off in choice of u

e in practice, #iterations is in the tens; not very sensitive for p > 10
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polynomial-time complexity of barrier method

o for y=1+1/y/m:

o)

€

e number of Newton iterations for fixed gap reduction is O(y/m)

e multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose
fixed (u = 10,...,20)
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Generalized inequalities

minimize  fo(x)
subject to fz( ) 2k, i=1,....,m
Ax =10
e foconvex, f; : R" — RN = 1,...,m, convex with respect to proper

cones K; € R
e f, twice continuously differentiable
o Ac RP*" with rank A =p
e we assume p* is finite and attained

e we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

Y : RY — R is generalized logarithm for proper cone K C RY if:

e dom+1 = int K and V?)(y) < 0 for y =g 0
o Y(sy) =1Y(y)+0logs for y =k 0, s >0 (0 is the degree of 1)

examples
e nonnegative orthant K = R"}: ¢(y) = >, logy;, with degree § =n

e positive semidefinite cone K = S’:

Y(Y) =logdetY (0 =mn)

e second-order cone K = {y ¢ R"™ | (2 + - + y2)V/2 <y in }:

v(y) =log(yo —vi — - —y2)  (0=2)
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properties (without proof): for y > 0,

Vi(y) =x+ 0,  y' ' Vi(y) =0

e nonnegative orthant RY}: ¢(y) = >, logy;
V(y) = 1/y1, - ), ¥y Vo(y) =n

e positive semidefinite cone S’ ¥ (Y) =logdet Y

Vy(Y)=Y 1 tr(YVY(Y)) =n

e second-order cone K = {y ¢ R"™ | (2 + - + )2 <y in }:

—Y1

Vip(y) = ’ L YTV(y) =2

= —y2 | —Un
| Yn+1 _

Interior-point methods 12-25



Logarithmic barrier and central path

logarithmic barrier for fi(z) <, 0, ..., fi(z) 2k, O:

o(z) = —Zwi(—fi(a@)), dom ¢ = {z | fi(x) <k, 0, i=1,...,m}

e 1); is generalized logarithm for K;, with degree 0,

® ¢ is convex, twice continuously differentiable

central path: {z*(¢) | ¢ > 0} where x*(¢) solves

minimize  tfo(z) + ¢(x)
subject to Az =0b
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Dual points on central path

xr = x*(t) if there exists w € R,
tV fo(z) + ZD]‘; VIV (—fi(z) + ATw =0

(Dfi(x) € R¥*™ is derivative matrix of fi)

e therefore, x*(t) minimizes Lagrangian L(x, \*(t),v*(t)), where

N () = V(- (0), V() =

w
t
e from properties of 1;: Af(f) >k 0, with duality gap

fo(@™(t)) — g(A*(t),v*(t)) = (1/1) Zﬁi
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example: semidefinite programming (with F; € SP)

minimize cl'z

subject to F'(z) =" ,x;F; + G =<0

e logarithmic barrier: ¢(x) = logdet(—F(z)™1)

e central path: z*(¢) minimizes tc!'z — log det(—F(x)); hence

te; —tr(FF(z*(t))™ ) =0, i=1,...,n

e dual point on central path: Z*(t) = —(1/t)F(x*(t))~! is feasible for

maximize tr(GZ2)
subject to tr(F;Z)+c¢; =0, i=1,....,n
Z =0

e duality gap on central path: cl2*(t) — tr(GZ*(t)) = p/t

Interior-point methods 12-28



Barrier method

given strictly feasible x, t := t© > 0, pu > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(¢) by minimizing t fo + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if (D>.0;)/t < e.

4. Increaset. t := ut.

e only difference is duality gap m/t on central path is replaced by ) . 0;/t

e number of outer iterations:

log((3=; 0:)/(et'))

log u

e complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R°)
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Newton iterations 7

semidefinite program (100 variables, LMI constraint in $*%°)
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family of SDPs (A € S”, x € R")

minimize 17z
subject to A+ diag(x) =0

n = 10,...,1000, for each n solve 100 randomly generated instances
350
c 30}
ke
4
o
p=
c
)
)
=
(]
=
10 102 103
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

e update primal and dual variables at each iteration; no distinction
between inner and outer iterations

e often exhibit superlinear asymptotic convergence

e search directions can be interpreted as Newton directions for modified
KKT conditions

e can start at infeasible points

e cost per iteration same as barrier method
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