
Convex Optimization — Boyd & Vandenberghe

6. Approximation and fitting

• norm approximation

• least-norm problems

• regularized approximation

• robust approximation
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Norm approximation

minimize ‖Ax− b‖

(A ∈ Rm×n with m ≥ n, ‖ · ‖ is a norm on Rm)

interpretations of solution x⋆ = argminx ‖Ax− b‖:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b
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examples

• least-squares approximation (‖ · ‖2): solution satisfies normal equations

ATAx = AT b

(x⋆ = (ATA)−1AT b if rankA = n)

• Chebyshev approximation (‖ · ‖∞): can be solved as an LP

minimize t
subject to −t1 � Ax− b � t1

• sum of absolute residuals approximation (‖ · ‖1): can be solved as an LP

minimize 1
Ty

subject to −y � Ax− b � y
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Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)
subject to r = Ax− b

(A ∈ Rm×n, φ : R → R is a convex penalty function)

examples

• quadratic: φ(u) = u2

• deadzone-linear with width a:

φ(u) = max{0, |u| − a}

• log-barrier with limit a:

φ(u) =

{

−a2 log(1− (u/a)2) |u| < a
∞ otherwise
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example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|, φ(u) = u2, φ(u) = max{0, |u|−a}, φ(u) = − log(1−u2)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

φhub(u) =

{

u2 |u| ≤ M
M(2|u| −M) |u| > M

linear growth for large u makes approximation less sensitive to outliers

replacements
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• left: Huber penalty for M = 1

• right: affine function f(t) = α+ βt fitted to 42 points ti, yi (circles)
using quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize ‖x‖
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ‖ · ‖ is a norm on Rn)

interpretations of solution x⋆ = argminAx=b ‖x‖:

• geometric: x⋆ is point in affine set {x | Ax = b} with minimum
distance to 0

• estimation: b = Ax are (perfect) measurements of x; x⋆ is smallest
(’most plausible’) estimate consistent with measurements

• design: x are design variables (inputs); b are required results (outputs)

x⋆ is smallest (’most efficient’) design that satisfies requirements
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examples

• least-squares solution of linear equations (‖ · ‖2):
can be solved via optimality conditions

2x+ATν = 0, Ax = b

• minimum sum of absolute values (‖ · ‖1): can be solved as an LP

minimize 1
Ty

subject to −y � x � y, Ax = b

tends to produce sparse solution x⋆

extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)
subject to Ax = b

φ : R → R is convex penalty function

Approximation and fitting 6–8



Regularized approximation

minimize (w.r.t. R2
+) (‖Ax− b‖, ‖x‖)

A ∈ Rm×n, norms on Rm and Rn can be different

interpretation: find good approximation Ax ≈ b with small x

• estimation: linear measurement model y = Ax+ v, with prior
knowledge that ‖x‖ is small

• optimal design: small x is cheaper or more efficient, or the linear
model y = Ax is only valid for small x

• robust approximation: good approximation Ax ≈ b with small x is
less sensitive to errors in A than good approximation with large x
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Scalarized problem

minimize ‖Ax− b‖+ γ‖x‖

• solution for γ > 0 traces out optimal trade-off curve

• other common method: minimize ‖Ax− b‖2 + δ‖x‖2 with δ > 0

Tikhonov regularization

minimize ‖Ax− b‖22 + δ‖x‖22

can be solved as a least-squares problem

minimize
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solution x⋆ = (ATA+ δI)−1AT b
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Optimal input design

linear dynamical system with impulse response h:

y(t) =

t
∑

τ=0

h(τ)u(t− τ), t = 0, 1, . . . , N

input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output ydes: Jtrack =
∑N

t=0(y(t)− ydes(t))
2

2. input magnitude: Jmag =
∑N

t=0 u(t)
2

3. input variation: Jder =
∑N−1

t=0 (u(t+ 1)− u(t))2

track desired output using a small and slowly varying input signal

regularized least-squares formulation

minimize Jtrack + δJder + ηJmag

for fixed δ, η, a least-squares problem in u(0), . . . , u(N)
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example: 3 solutions on optimal trade-off surface

(top) δ = 0, small η; (middle) δ = 0, larger η; (bottom) large δ
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Signal reconstruction

minimize (w.r.t. R2
+) (‖x̂− xcor‖2, φ(x̂))

• x ∈ Rn is unknown signal

• xcor = x+ v is (known) corrupted version of x, with additive noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

φquad(x̂) =
n−1
∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1
∑

i=1

|x̂i+1 − x̂i|
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quadratic smoothing example

i

x
x
c
o
r

0

0

1000

1000

2000

2000

3000

3000

4000

4000

−0.5

−0.5

0

0

0.5

0.5

i

x̂
x̂

x̂

0

0

0

1000

1000

1000

2000

2000

2000

3000

3000

3000

4000

4000

4000

−0.5

−0.5

−0.5

0

0

0

0.5

0.5

0.5

original signal x and noisy
signal xcor

three solutions on trade-off curve
‖x̂− xcor‖2 versus φquad(x̂)

Approximation and fitting 6–14



total variation reconstruction example
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quadratic smoothing smooths out noise and sharp transitions in signal
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Robust approximation

minimize ‖Ax− b‖ with uncertain A

two approaches:

• stochastic: assume A is random, minimize E ‖Ax− b‖
• worst-case: set A of possible values of A, minimize supA∈A ‖Ax− b‖

tractable only in special cases (certain norms ‖ · ‖, distributions, sets A)

example: A(u) = A0 + uA1

• xnom minimizes ‖A0x− b‖22
• xstoch minimizes E ‖A(u)x− b‖22
with u uniform on [−1, 1]

• xwc minimizes sup−1≤u≤1 ‖A(u)x− b‖22
figure shows r(u) = ‖A(u)x− b‖2
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stochastic robust LS with A = Ā+U , U random, EU = 0, EUTU = P

minimize E ‖(Ā+ U)x− b‖22

• explicit expression for objective:

E ‖Ax− b‖22 = E ‖Āx− b+ Ux‖22
= ‖Āx− b‖22 +ExTUTUx

= ‖Āx− b‖22 + xTPx

• hence, robust LS problem is equivalent to LS problem

minimize ‖Āx− b‖22 + ‖P 1/2x‖22

• for P = δI, get Tikhonov regularized problem

minimize ‖Āx− b‖22 + δ‖x‖22
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worst-case robust LS with A = {Ā+ u1A1 + · · ·+ upAp | ‖u‖2 ≤ 1}

minimize supA∈A ‖Ax− b‖22 = sup‖u‖2≤1 ‖P (x)u+ q(x)‖22

where P (x) =
[

A1x A2x · · · Apx
]

, q(x) = Āx− b

• from page 5–14, strong duality holds between the following problems

maximize ‖Pu+ q‖22
subject to ‖u‖22 ≤ 1

minimize t+ λ

subject to





I P q
PT λI 0
qT 0 t



 � 0

• hence, robust LS problem is equivalent to SDP

minimize t+ λ

subject to





I P (x) q(x)
P (x)T λI 0
q(x)T 0 t



 � 0

Approximation and fitting 6–19



example: histogram of residuals

r(u) = ‖(A0 + u1A1 + u2A2)x− b‖2

with u uniformly distributed on unit disk, for three values of x
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• xls minimizes ‖A0x− b‖2
• xtik minimizes ‖A0x− b‖22 + δ‖x‖22 (Tikhonov solution)

• xrls minimizes supA∈A ‖Ax− b‖22 + ‖x‖22
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