11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- we assume p^{\star} is finite and attained

optimality conditions: x^* is optimal iff there exists a ν^* such that

$$\nabla f(x^{\star}) + A^T \nu^{\star} = 0, \qquad Ax^{\star} = b$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality condition:

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ \nu^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0$$

• equivalent condition for nonsingularity: $P + A^T A \succ 0$

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)

reduced or eliminated problem

minimize $f(Fz + \hat{x})$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution $z^\star,$ obtain x^\star and ν^\star as

$$x^{\star} = F z^{\star} + \hat{x}, \qquad \nu^{\star} = -(AA^T)^{-1}A\nabla f(x^{\star})$$

example: optimal allocation with resource constraint

minimize
$$f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

subject to $x_1 + x_2 + \dots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

reduced problem:

minimize
$$f_1(x_1) + \dots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \dots - x_{n-1})$$

(variables x_1, \dots, x_{n-1})

Newton step

Newton step $\Delta x_{\rm nt}$ of f at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

$$\begin{array}{ll} \mbox{minimize} & \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v \\ \mbox{subject to} & A(x+v) = b \end{array}$$

• $\Delta x_{\rm nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Newton decrement

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

properties

• gives an estimate of $f(x) - p^*$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general, $\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2}$

Newton's method with equality constraints

given starting point $x \in \text{dom } f$ with Ax = b, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement $\Delta x_{
 m nt}$, $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

- a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

minimize
$$\tilde{f}(z) = f(Fz + \hat{x})$$

- variables $z \in \mathbf{R}^{n-p}$
- \hat{x} satisfies $A\hat{x} = b$; rank F = n p and AF = 0
- Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints

when started at $x^{(0)} = Fz^{(0)} + \hat{x}$, iterates are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x (*i.e.*, $Ax \neq b$) linearizing optimality conditions at infeasible x (with $x \in \text{dom } f$) gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = -\begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

$$y = (x, \nu), \qquad r(y) = (\nabla f(x) + A^T \nu, Ax - b)$$

• linearizing r(y) = 0 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta \nu_{\rm nt} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

same as (1) with $w=
u+\Delta
u_{
m nt}$

Infeasible start Newton method

given starting point $x \in \text{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$. repeat

- 1. Compute primal and dual Newton steps $\Delta x_{
 m nt}$, $\Delta
 u_{
 m nt}$.
- 2. Backtracking line search on $||r||_2$. t := 1. while $||r(x + t\Delta x_{nt}, \nu + t\Delta \nu_{nt})||_2 > (1 - \alpha t)||r(x, \nu)||_2$, $t := \beta t$. 3. Update. $x := x + t\Delta x_{nt}$, $\nu := \nu + t\Delta \nu_{nt}$. until Ax = b and $||r(x, \nu)||_2 \le \epsilon$.
- not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $\|r(y)\|_2$ in direction $\Delta y = (\Delta x_{\rm nt}, \Delta \nu_{\rm nt})$ is

$$\frac{d}{dt} \left\| r(y + t\Delta y) \right\|_2 \bigg|_{t=0} = -\|r(y)\|_2$$

Solving KKT systems

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

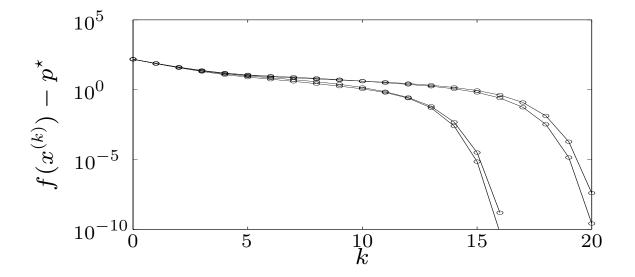
solution methods

- LDL^T factorization
- elimination (if *H* nonsingular)

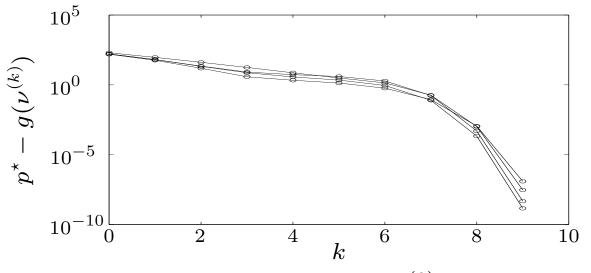
$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

• elimination with singular H: write as

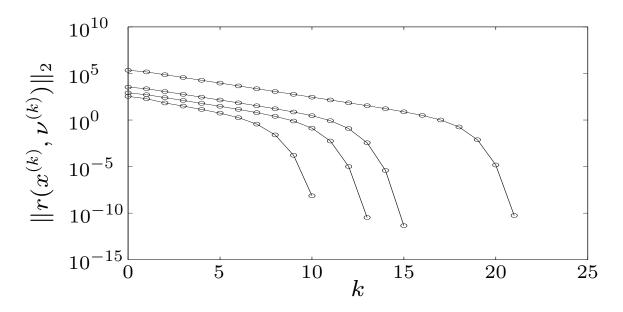
$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$


with $Q \succeq 0$ for which $H + A^T Q A \succ 0$, and apply elimination

Equality constrained analytic centering


primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = bdual problem: maximize $-b^T \nu + \sum_{i=1}^{n} \log(A^T \nu)_i + n$

three methods for an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points


1. Newton method with equality constraints (requires $x^{(0)} \succ 0$, $Ax^{(0)} = b$)

2. Newton method applied to dual problem (requires $A^T \nu^{(0)} \succ 0$)

3. infeasible start Newton method (requires $x^{(0)} \succ 0$)

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- 2. solve Newton system $A \operatorname{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{diag}(A^T \nu)^{-1} \mathbf{1}$
- 3. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1}\mathbf{1} - A^T\nu \\ b - Ax \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Network flow optimization

minimize $\sum_{i=1}^{n} \phi_i(x_i)$ subject to Ax = b

- $\bullet\,$ directed graph with n arcs, p+1 nodes
- x_i : flow through arc *i*; ϕ_i : cost flow function for arc *i* (with $\phi''_i(x) > 0$)
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1) \times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbf{R}^p$ is (reduced) source vector
- $\operatorname{rank} A = p$ if graph is connected

KKT system

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

• $H = \operatorname{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$, positive diagonal

• solve via elimination:

$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$\begin{split} (AH^{-1}A^T)_{ij} \neq 0 &\iff (AA^T)_{ij} \neq 0 \\ &\iff \text{ nodes } i \text{ and } j \text{ are connected by an arc} \end{split}$$

Analytic center of linear matrix inequality

$$\begin{array}{ll} \mbox{minimize} & -\log \det X \\ \mbox{subject to} & \mbox{tr}(A_iX) = b_i, \quad i = 1, \dots, p \end{array}$$

variable $X \in \mathbf{S}^n$

optimality conditions

$$X^* \succ 0, \qquad -(X^*)^{-1} + \sum_{j=1}^p \nu_j^* A_i = 0, \qquad \mathbf{tr}(A_i X^*) = b_i, \quad i = 1, \dots, p$$

Newton equation at feasible *X*:

$$X^{-1}\Delta X X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \qquad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

- follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} X^{-1} \Delta X X^{-1}$
- n(n+1)/2 + p variables ΔX , w

solution by block elimination

- eliminate ΔX from first equation: $\Delta X = X \sum_{j=1}^{p} w_j X A_j X$
- substitute ΔX in second equation

$$\sum_{j=1}^{p} \operatorname{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \dots, p$$
(2)

a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$

flop count (dominant terms) using Cholesky factorization $X = LL^T$:

- form p products $L^T A_j L$: $(3/2)pn^3$
- form p(p+1)/2 inner products $tr((L^TA_iL)(L^TA_jL))$: $(1/2)p^2n^2$
- solve (2) via Cholesky factorization: $(1/3)p^3$