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13. Conclusions

• main ideas of the course

• importance of modeling in optimization
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Modeling

mathematical optimization

• problems in engineering design, data analysis and statistics, economics,
management, . . . , can often be expressed as mathematical
optimization problems

• techniques exist to take into account multiple objectives or uncertainty
in the data

tractability

• roughly speaking, tractability in optimization requires convexity

• algorithms for nonconvex optimization find local (suboptimal) solutions,
or are very expensive

• surprisingly many applications can be formulated as convex problems
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Theoretical consequences of convexity

• local optima are global

• extensive duality theory

– systematic way of deriving lower bounds on optimal value
– necessary and sufficient optimality conditions
– certificates of infeasibility
– sensitivity analysis

• solution methods with polynomial worst-case complexity theory
(with self-concordance)

Conclusions 13–3



Practical consequences of convexity

(most) convex problems can be solved globally and efficiently

• interior-point methods require 20 – 80 steps in practice

• basic algorithms (e.g., Newton, barrier method, . . . ) are easy to
implement and work well for small and medium size problems (larger
problems if structure is exploited)

• more and more high-quality implementations of advanced algorithms
and modeling tools are becoming available

• high level modeling tools like cvx ease modeling and problem
specification
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How to use convex optimization

to use convex optimization in some applied context

• use rapid prototyping, approximate modeling

– start with simple models, small problem instances, inefficient solution
methods

– if you don’t like the results, no need to expend further effort on more
accurate models or efficient algorithms

• work out, simplify, and interpret optimality conditions and dual

• even if the problem is quite nonconvex, you can use convex optimization

– in subproblems, e.g., to find search direction
– by repeatedly forming and solving a convex approximation at the

current point
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Further topics

some topics we didn’t cover:

• methods for very large scale problems

• subgradient calculus, convex analysis

• localization, subgradient, and related methods

• distributed convex optimization

• applications that build on or use convex optimization
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